Algebraic Curves In Cryptography

Author by : San Ling
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 17
Total Download : 543
File Size : 49,6 Mb
GET BOOK

Description : The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sh


Algebraic Curves And Cryptography

Author by : Vijaya Kumar Murty
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 98
Total Download : 853
File Size : 46,7 Mb
GET BOOK

Description : It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions. This volume is based on seminars on algebraic curves and cryptography held at the GANITA Lab of the University of Toronto during 2001-2008. The articles are mostly suitable for independent study by graduate students who wish to enter the field, both in terms of introducing basic material as well as guiding them in the literature. The literature in cryptography seems to be growing at an exponential rate. For a new entrant into the subject, navigating through this ocean can seem quite daunting. In this volume, the reader is steered toward a discussion of a few key ideas of the subject, together with some brief guidance for further reading. It is hoped that this approach may render the subject more approachable. Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).|It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions. This volume is based on seminars on algebraic curves and cryptography held at the GANITA Lab of the University of Toronto during 2001-2008. The articles are mostly suitable for independent study by graduate students who wish to enter the field, both in terms of introducing basic material as well as guiding them in the literature. The literature in cryptography seems to be growing at an exponential rate. For a new entrant into the subject, navigating through this ocean can seem quite daunting. In this volume, the reader is steered toward a discussion of a few key ideas of the subject, together with some brief guidance for further reading. It is hoped that this approach may render the subject more approachable. Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).


Algebraic Curves And Finite Fields

Author by : Harald Niederreiter
Languange : en
Publisher by : Walter de Gruyter GmbH & Co KG
Format Available : PDF, ePub, Mobi
Total Read : 52
Total Download : 176
File Size : 47,9 Mb
GET BOOK

Description : Algebra and number theory have always been counted among the most beautiful and fundamental mathematical areas with deep proofs and elegant results. However, for a long time they were not considered of any substantial importance for real-life applications. This has dramatically changed with the appearance of new topics such as modern cryptography, coding theory, and wireless communication. Nowadays we find applications of algebra and number theory frequently in our daily life. We mention security and error detection for internet banking, check digit systems and the bar code, GPS and radar systems, pricing options at a stock market, and noise suppression on mobile phones as most common examples. This book collects the results of the workshops "Applications of algebraic curves" and "Applications of finite fields" of the RICAM Special Semester 2013. These workshops brought together the most prominent researchers in the area of finite fields and their applications around the world. They address old and new problems on curves and other aspects of finite fields, with emphasis on their diverse applications to many areas of pure and applied mathematics.


Algebraic Curves And Their Applications

Author by : Lubjana Beshaj
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 12
Total Download : 514
File Size : 54,9 Mb
GET BOOK

Description : This volume contains a collection of papers on algebraic curves and their applications. While algebraic curves traditionally have provided a path toward modern algebraic geometry, they also provide many applications in number theory, computer security and cryptography, coding theory, differential equations, and more. Papers cover topics such as the rational torsion points of elliptic curves, arithmetic statistics in the moduli space of curves, combinatorial descriptions of semistable hyperelliptic curves over local fields, heights on weighted projective spaces, automorphism groups of curves, hyperelliptic curves, dessins d'enfants, applications to Painlevé equations, descent on real algebraic varieties, quadratic residue codes based on hyperelliptic curves, and Abelian varieties and cryptography. This book will be a valuable resource for people interested in algebraic curves and their connections to other branches of mathematics.


Algebraic Curves And Cryptography

Author by : Alfred Menezes
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 21
Total Download : 235
File Size : 48,6 Mb
GET BOOK

Description :


Applications Of Algebraic Curves To Cryptography

Author by : Seung Kook Park
Languange : en
Publisher by : ProQuest
Format Available : PDF, ePub, Mobi
Total Read : 12
Total Download : 451
File Size : 47,6 Mb
GET BOOK

Description : In this thesis we study two different applications of algebraic curves to cryptography.


Introduction To Plane Algebraic Curves

Author by : Ernst Kunz
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 32
Total Download : 568
File Size : 48,8 Mb
GET BOOK

Description : * Employs proven conception of teaching topics in commutative algebra through a focus on their applications to algebraic geometry, a significant departure from other works on plane algebraic curves in which the topological-analytic aspects are stressed *Requires only a basic knowledge of algebra, with all necessary algebraic facts collected into several appendices * Studies algebraic curves over an algebraically closed field K and those of prime characteristic, which can be applied to coding theory and cryptography * Covers filtered algebras, the associated graded rings and Rees rings to deduce basic facts about intersection theory of plane curves, applications of which are standard tools of computer algebra * Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook


Algebraic Geometry For Coding Theory And Cryptography

Author by : Everett W. Howe
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 36
Total Download : 584
File Size : 55,9 Mb
GET BOOK

Description : Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.


Algebraic Geometry And Its Applications

Author by : Jean Chaumine
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 22
Total Download : 933
File Size : 50,5 Mb
GET BOOK

Description : This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre''s questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry. Sample Chapter(s). Chapter 1: Fast addition on non-hyperelliptic genus 3 curves (424 KB). Contents: Symmetric Cryptography and Algebraic Curves (F Voloch); Galois Invariant Smoothness Basis (J-M Couveignes & R Lercier); Fuzzy Pairing-Based CL-PKC (M Kiviharju); On the Semiprimitivity of Cyclic Codes (Y Aubry & P Langevin); Decoding of Scroll Codes (G H Hitching & T Johnsen); An Optimal Unramified Tower of Function Fields (K Brander); On the Number of Resilient Boolean Functions (S Mesnager); On Quadratic Extensions of Cyclic Projective Planes (H F Law & P P W Wong); Partitions of Vector Spaces over Finite Fields (Y Zelenyuk); and other papers. Readership: Mathematicians, researchers in mathematics (academic and industry R&D).


Elliptic Curves In Cryptography

Author by : I. Blake
Languange : en
Publisher by : Cambridge University Press
Format Available : PDF, ePub, Mobi
Total Read : 93
Total Download : 845
File Size : 55,7 Mb
GET BOOK

Description : This book explains the mathematics behind practical implementations of elliptic curve systems.


Algebraic Aspects Of Digital Communications

Author by : Tanush Shaska
Languange : en
Publisher by : IOS Press
Format Available : PDF, ePub, Mobi
Total Read : 93
Total Download : 549
File Size : 47,8 Mb
GET BOOK

Description : Developments of the last few decades in digital communications have created a close link between mathematics and areas of computer science and electrical engineering. A collaboration between such areas now seems very natural, due to problems which require deep knowledge and expertise in each area. Algebra and some of its branches, such as algebraic geometry, computational algebra, group theory, etc., have played a special role in such collaboration.


Advances On Superelliptic Curves And Their Applications

Author by : L. Beshaj
Languange : en
Publisher by : IOS Press
Format Available : PDF, ePub, Mobi
Total Read : 41
Total Download : 206
File Size : 49,5 Mb
GET BOOK

Description : This book had its origins in the NATO Advanced Study Institute (ASI) held in Ohrid, Macedonia, in 2014. The focus of this ASI was the arithmetic of superelliptic curves and their application in different scientific areas, including whether all the applications of hyperelliptic curves, such as cryptography, mathematical physics, quantum computation and diophantine geometry, can be carried over to the superelliptic curves. Additional papers have been added which provide some background for readers who were not at the conference, with the intention of making the book logically more complete and easier to read, but familiarity with the basic facts of algebraic geometry, commutative algebra and number theory are assumed. The book is divided into three sections. The first part deals with superelliptic curves with regard to complex numbers, the automorphisms group and the corresponding Hurwitz loci. The second part of the book focuses on the arithmetic of the subject, while the third addresses some of the applications of superelliptic curves.


Elementary Number Theory Cryptography And Codes

Author by : M. Welleda Baldoni
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 58
Total Download : 519
File Size : 50,8 Mb
GET BOOK

Description : In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.


Elliptic Curves

Author by : Lawrence C. Washington
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 32
Total Download : 189
File Size : 52,5 Mb
GET BOOK

Description : Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.


Rational Algebraic Curves

Author by : J. Rafael Sendra
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 9
Total Download : 242
File Size : 46,6 Mb
GET BOOK

Description : The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.


Modern Cryptography And Elliptic Curves A Beginner S Guide

Author by : Thomas R. Shemanske
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 32
Total Download : 349
File Size : 40,6 Mb
GET BOOK

Description : This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie–Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC. The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.


Applications Of Finite Fields

Author by : Alfred J. Menezes
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 26
Total Download : 337
File Size : 53,7 Mb
GET BOOK

Description : The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches in mathematics. Inrecent years we have witnessed a resurgence of interest in finite fields, and this is partly due to important applications in coding theory and cryptography. The purpose of this book is to introduce the reader to some of these recent developments. It should be of interest to a wide range of students, researchers and practitioners in the disciplines of computer science, engineering and mathematics. We shall focus our attention on some specific recent developments in the theory and applications of finite fields. While the topics selected are treated in some depth, we have not attempted to be encyclopedic. Among the topics studied are different methods of representing the elements of a finite field (including normal bases and optimal normal bases), algorithms for factoring polynomials over finite fields, methods for constructing irreducible polynomials, the discrete logarithm problem and its implications to cryptography, the use of elliptic curves in constructing public key cryptosystems, and the uses of algebraic geometry in constructing good error-correcting codes. To limit the size of the volume we have been forced to omit some important applications of finite fields. Some of these missing applications are briefly mentioned in the Appendix along with some key references.


Elliptic Curves And Their Applications To Cryptography

Author by : Andreas Enge
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 9
Total Download : 297
File Size : 52,6 Mb
GET BOOK

Description : Since their invention in the late seventies, public key cryptosystems have become an indispensable asset in establishing private and secure electronic communication, and this need, given the tremendous growth of the Internet, is likely to continue growing. Elliptic curve cryptosystems represent the state of the art for such systems. Elliptic Curves and Their Applications to Cryptography: An Introduction provides a comprehensive and self-contained introduction to elliptic curves and how they are employed to secure public key cryptosystems. Even though the elegant mathematical theory underlying cryptosystems is considerably more involved than for other systems, this text requires the reader to have only an elementary knowledge of basic algebra. The text nevertheless leads to problems at the forefront of current research, featuring chapters on point counting algorithms and security issues. The Adopted unifying approach treats with equal care elliptic curves over fields of even characteristic, which are especially suited for hardware implementations, and curves over fields of odd characteristic, which have traditionally received more attention. Elliptic Curves and Their Applications: An Introduction has been used successfully for teaching advanced undergraduate courses. It will be of greatest interest to mathematicians, computer scientists, and engineers who are curious about elliptic curve cryptography in practice, without losing the beauty of the underlying mathematics.


Algebraic Curves And Cryptographic Protocols For The E Society

Author by : Ricard Garra Oronich
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 43
Total Download : 255
File Size : 55,5 Mb
GET BOOK

Description : Amb l'augment permanent de l'adopció de sistemes intel·ligents de tot tipus en la societat actual apareixen nous reptes. Avui en dia quasi tothom en la societat moderna porta a sobre almenys un telèfon intel·ligent, si no és que porta encara més dispositius capaços d'obtenir dades personals, com podria ser un smartwatch per exemple. De manera similar, pràcticament totes les cases tindran un comptador intel·ligent en el futur pròxim per a fer un seguiment del consum d'energia. També s'espera que molts més dispositius del Internet de les Coses siguin instal·lats de manera ubiqua, recol·lectant informació dels seus voltants i/o realitzant accions, com per exemple en sistemes d'automatització de la llar, estacions meteorològiques o dispositius per la ciutat intel·ligent en general. Tots aquests dispositius i sistemes necessiten enviar dades de manera segura i confidencial, les quals poden contindre informació sensible o de caire privat. A més a més, donat el seu ràpid creixement, amb més de nou mil milions de dispositius en tot el món actualment, s'ha de tenir en compte la quantitat de dades que cal transmetre. En aquesta tesi mostrem la utilitat de les corbes algebraiques sobre cossos finits en criptosistemes de clau pública, en particular la de les corbes de gènere 2, ja que ofereixen la mida de clau més petita per a un nivell de seguretat donat i això redueix de manera significativa el cost total de comunicacions d'un sistema, a la vegada que manté un rendiment raonable. Analitzem com la valoració 2-àdica del cardinal de la Jacobiana augmenta en successives extensions quadràtiques, considerant corbes de gènere 2 en cossos de característica senar, incloent les supersingulars. A més, millorem els algoritmes actuals per a computar la meitat d'un divisor d'una corba de gènere 2 sobre un cos binari, cosa que pot ser útil en la multiplicació escalar, que és l'operació principal en criptografia de clau pública amb corbes. Pel que fa a la privacitat, presentem un sistema de pagament d'aparcament per mòbil que permet als conductors pagar per aparcar mantenint la seva privacitat, i per tant impedint que el proveïdor del servei o un atacant obtinguin un perfil de conducta d'aparcament. Finalment, oferim protocols de smart metering millorats, especialment pel que fa a la privacitat i evitant l'ús de terceres parts de confiança.


Discrete Algebraic Methods

Author by : Volker Diekert
Languange : en
Publisher by : Walter de Gruyter GmbH & Co KG
Format Available : PDF, ePub, Mobi
Total Read : 31
Total Download : 821
File Size : 47,9 Mb
GET BOOK

Description : The idea behind this book is to provide the mathematical foundations for assessing modern developments in the Information Age. It deepens and complements the basic concepts, but it also considers instructive and more advanced topics. The treatise starts with a general chapter on algebraic structures; this part provides all the necessary knowledge for the rest of the book. The next chapter gives a concise overview of cryptography. Chapter 3 on number theoretic algorithms is important for developping cryptosystems, Chapter 4 presents the deterministic primality test of Agrawal, Kayal, and Saxena. The account to elliptic curves again focuses on cryptographic applications and algorithms. With combinatorics on words and automata theory, the reader is introduced to two areas of theoretical computer science where semigroups play a fundamental role.The last chapter is devoted to combinatorial group theory and its connections to automata. Contents: Algebraic structures Cryptography Number theoretic algorithms Polynomial time primality test Elliptic curves Combinatorics on words Automata Discrete infinite groups


Elliptic Curves

Author by : Lawrence C. Washington
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 27
Total Download : 968
File Size : 46,9 Mb
GET BOOK

Description : Elliptic curves have played an increasingly important role in number theory and related fields over the last several decades, most notably in areas such as cryptography, factorization, and the proof of Fermat's Last Theorem. However, most books on the subject assume a rather high level of mathematical sophistication, and few are truly accessible to


A Computational Introduction To Elliptic And Hyperelliptic Curve Cryptography

Author by : Nicholas Wilcox
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 42
Total Download : 816
File Size : 51,6 Mb
GET BOOK

Description : At its core, cryptography relies on problems that are simple to construct but difficult to solve unless certain information (the "key") is known. Many of these problems come from number theory and group theory. One method of obtaining groups from which to build cryptosystems is to define algebraic curves over finite fields and then derive a group structure from the set of points on those curves. This thesis serves as an exposition of Elliptic Curve Cryptography (ECC), preceded by a discussion of some basic cryptographic concepts and followed by a glance into one generalization of ECC: cryptosystems based on hyperelliptic curves.


Algebraic Curves Over A Finite Field

Author by : J. W. P. Hirschfeld
Languange : en
Publisher by : Princeton University Press
Format Available : PDF, ePub, Mobi
Total Read : 80
Total Download : 686
File Size : 53,5 Mb
GET BOOK

Description : This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.


Handbook Of Elliptic And Hyperelliptic Curve Cryptography

Author by : Henri Cohen
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 54
Total Download : 520
File Size : 54,6 Mb
GET BOOK

Description : The discrete logarithm problem based on elliptic and hyperelliptic curves has gained a lot of popularity as a cryptographic primitive. The main reason is that no subexponential algorithm for computing discrete logarithms on small genus curves is currently available, except in very special cases. Therefore curve-based cryptosystems require much smaller key sizes than RSA to attain the same security level. This makes them particularly attractive for implementations on memory-restricted devices like smart cards and in high-security applications. The Handbook of Elliptic and Hyperelliptic Curve Cryptography introduces the theory and algorithms involved in curve-based cryptography. After a very detailed exposition of the mathematical background, it provides ready-to-implement algorithms for the group operations and computation of pairings. It explores methods for point counting and constructing curves with the complex multiplication method and provides the algorithms in an explicit manner. It also surveys generic methods to compute discrete logarithms and details index calculus methods for hyperelliptic curves. For some special curves the discrete logarithm problem can be transferred to an easier one; the consequences are explained and suggestions for good choices are given. The authors present applications to protocols for discrete-logarithm-based systems (including bilinear structures) and explain the use of elliptic and hyperelliptic curves in factorization and primality proving. Two chapters explore their design and efficient implementations in smart cards. Practical and theoretical aspects of side-channel attacks and countermeasures and a chapter devoted to (pseudo-)random number generation round off the exposition. The broad coverage of all- important areas makes this book a complete handbook of elliptic and hyperelliptic curve cryptography and an invaluable reference to anyone interested in this exciting field.


Elliptic Curves And Cryptography

Author by : Senorina R. Vázquez
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 77
Total Download : 535
File Size : 42,7 Mb
GET BOOK

Description : In this expository thesis we study elliptic curves and their role in cryptography. In doing so we examine an intersection of linear algebra, abstract algebra, number theory, and algebraic geometry, all of which combined provide the necessary background. First we present background information on rings, fields, groups, group actions, and linear algebra. Then we delve into the structure and classification of finite fields as well as construction of finite fields and computation in finite fields. We next explore logarithms in finite fields and introduce the Diffie-Hellman key exchange system. Subsequently, we take a look at the projective and affine planes and we examine the action of the general linear group of degree 3 (over K) on the points of the projective plane P2(K). We then explore the geometry of the projective plane with Desargues Theorem. Next, we study conics, quadratic forms, and methods of counting intersection of curves. Finally, we study forms of degree 3 and we are able to explore cubics and the group law on an elliptic curve which leads us to our ultimate goal of examining the role of elliptic curves in cryptography.


Circuits And Systems For Security And Privacy

Author by : Farhana Sheikh
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 73
Total Download : 795
File Size : 49,8 Mb
GET BOOK

Description : Circuits and Systems for Security and Privacy begins by introducing the basic theoretical concepts and arithmetic used in algorithms for security and cryptography, and by reviewing the fundamental building blocks of cryptographic systems. It then analyzes the advantages and disadvantages of real-world implementations that not only optimize power, area, and throughput but also resist side-channel attacks. Merging the perspectives of experts from industry and academia, the book provides valuable insight and necessary background for the design of security-aware circuits and systems as well as efficient accelerators used in security applications.


Riemann Surfaces And Algebraic Curves

Author by : Renzo Cavalieri
Languange : en
Publisher by : Cambridge University Press
Format Available : PDF, ePub, Mobi
Total Read : 41
Total Download : 759
File Size : 53,6 Mb
GET BOOK

Description : Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.