Biomechanical Modelling At The Molecular Cellular And Tissue Levels

Author by : Gerhard A. Holzapfel
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 97
Total Download : 332
File Size : 44,7 Mb
GET BOOK

Description : J.D. Humphrey: Need for a Continuum Biochemomechanical Theory of Soft Tissue and Cellular Growth and Remodeling H. Schmid and P.J. Hunter: Multi-scale Modelling of the Heart R.W. Ogden: Anisotropy and Nonlinear Elasticity in Arterial Wall Mechanics G.A. Holzapfel: Arterial Tissue in Health and Disease: Experimental Data, Collagen-based Modeling and Simulation, Including Aortic Dissection.


Integrated Biomechanical Model Of Cells Embedded In Extracellular Matrix

Author by : Hari Shankar Muddana
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 61
Total Download : 679
File Size : 49,9 Mb
GET BOOK

Description : Nature encourages diversity in life forms (morphologies). The study of morphogenesis deals with understanding those processes that arise during the embryonic development of an organism. These processes control the organized spatial distribution of cells, which in turn gives rise to the characteristic form for the organism. Morphogenesis is a multi-scale modeling problem that can be studied at the molecular, cellular, and tissue levels. Here, we study the problem of morphogenesis at the cellular level by introducing an integrated biomechanical model of cells embedded in the extracellular matrix. The fundamental aspects of mechanobiology essential for studying morphogenesis at the cellular level are the cytoskeleton, extracellular matrix (ECM), and cell adhesion. Cells are modeled using tensegrity architecture. Our simulations demonstrate cellular events, such as differentiation, migration, and division using an extended tensegrity architecture that supports dynamic polymerization of the micro-filaments of the cell. Thus, our simulations add further support to the cellular tensegrity model. Viscoelastic behavior of extracellular matrix is modeled by extending one-dimensional mechanical models (by Maxwell and by Voigt) to three dimensions using finite element methods. The cell adhesion is modeled as a general Velcro-type model. We integrated the mechanics and dynamics of cell, ECM, and cell adhesion with a geometric model to create an integrated biomechanical model. In addition, the thesis discusses various computational issues, including generating the finite element mesh, mesh refinement, re-meshing, and solution mapping. As is known from a molecular level perspective, the genetic regulatory network of the organism controls this spatial distribution of cells along with some environmental factors modulating the process. The integrated biomechanical model presented here, besides generating interesting morphologies, can serve as a mesoscopic-scale platform upon which future work can correlate with the underlying genetic network.


Computational Modeling In Biomechanics

Author by : Suvranu De
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 46
Total Download : 383
File Size : 41,5 Mb
GET BOOK

Description : Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.


Biomechanics Trends In Modeling And Simulation

Author by : Gerhard A. Holzapfel
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 73
Total Download : 777
File Size : 48,6 Mb
GET BOOK

Description : The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls and the myocardium are discussed and the important influence of residual stresses on material response emphasized. The mechanics and function of the heart, the brain and adipose tissues are discussed as well. Particular attention is focused on microstructural and multi-scale modeling, finite element implementation and simulation of cells and tissues.


Developments And Novel Approaches In Biomechanics And Metamaterials

Author by : Bilen Emek Abali
Languange : en
Publisher by : Springer Nature
Format Available : PDF, ePub, Mobi
Total Read : 25
Total Download : 884
File Size : 48,7 Mb
GET BOOK

Description : This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019


Modelling Methodology For Physiology And Medicine

Author by : Ewart Carson
Languange : en
Publisher by : Newnes
Format Available : PDF, ePub, Mobi
Total Read : 96
Total Download : 256
File Size : 50,9 Mb
GET BOOK

Description : Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. Builds upon and enhances the reader's existing knowledge of modeling methodology and practice Editors are internationally renowned leaders in their respective fields Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems


Aneurysm

Author by : Yasuo Murai
Languange : en
Publisher by : BoD – Books on Demand
Format Available : PDF, ePub, Mobi
Total Read : 83
Total Download : 606
File Size : 50,6 Mb
GET BOOK

Description : This book's focus is on diagnosis and treatment of intracranial aneurysm, abdominal and thoracic aortic aneurysms. It addresses neurosurgical, vascular and cardiothoracic surgeons and interventional radiologists, but also anyone engaged in vascular medicine. It presents is an effort to collect an up-to-date account of existing knowledge, involving recent developments in this field. Various experts described details of established knowledge or newly recognized advances associated with diagnosis, treatment, perioperative management and mechanism. This is the first book that deals with the whole body aneurysm, such as cerebral aneurysm, abdominal aneurysm, and splenial aneurysm and to learn the latest developments in other fields is always useful. I hope this book will be used worldwide by vascular surgeons and interventionalists enhancing their knowledge and stimulating the advancement of this field.


Computational Modeling And Simulation Examples In Bioengineering

Author by : Nenad Filipovic
Languange : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 20
Total Download : 572
File Size : 47,6 Mb
GET BOOK

Description : This book focuses on biomedical engineering and its applications. More specifically, it provides the theoretical background for simulating pathological conditions in the area of bones, muscles, tissue, cardiovascular, cancer, lung, vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics and lattice boltzman. Aside from the theoretical background and knowledge, the author provides additional material consisting of a software package for simulations for the theoretical problems. In this way, the book enhances the reader’s learning capabilities in the field of biomedical engineering.


Vascular Engineering

Author by : Kazuo Tanishita
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 46
Total Download : 302
File Size : 49,5 Mb
GET BOOK

Description : This book describes the fundamental biology and mechanics of the vasculature and examines how this knowledge has underpinned the development of new clinical modalities, including endovascular treatment and vascularization of reconstructed tissue for regenerative medicine. Vascular engineering is a multidisciplinary field integrating vascular biology, hemodynamics, biomechanics, tissue engineering, and medicine. Each chapter offers insights into the dynamics of the circulatory system and explains how the impact of related disease conditions — atherosclerosis, hypertension, myocardial ischemia, and cerebral infarction — has generated a focus on developing expertise to both maintain and treat the vascular system. As a comprehensive book in this expanding area, Vascular Engineering serves as a valuable resource for clinicians as well as academics and professionals working in biophysics, biomedical engineering, and nano and microrheology. Graduate students in these subject areas will also find this volume insightful.


Statistical Atlases And Computational Models Of The Heart Imaging And Modelling Challenges

Author by : Oscar Camara
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 28
Total Download : 579
File Size : 45,6 Mb
GET BOOK

Description : This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM 2014, held in conjunction with MICCAI 2014, in Boston, MA, USA, in September 2014. The 30 revised full papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics such as sections on cardiac image processing; atlas construction; statistical modelling of cardiac function across different patient populations; cardiac mapping; cardiac computational physiology; model customization; atlas based functional analysis; ontological schemata for data and results; integrated functional and structural analyses; as well as the pre-clinical and clinical applicability of these methods.


Nonlinear Mechanics Of Soft Fibrous Materials

Author by : Luis Dorfmann
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 90
Total Download : 992
File Size : 53,6 Mb
GET BOOK

Description : The book presents a state-of-the-art overview of the fundamental theories, established models and ongoing research related to the modeling of these materials. Two approaches are conventionally used to develop constitutive relations for highly deformable fibrous materials. According to the phenomenological approach, a strain energy density function can be defined in terms of strain invariants. The other approach is based on kinetic theories, which treats a fibrous material as a randomly oriented inter-tangled network of long molecular chains bridged by permanent and temporary junctions. At the micro-level, these are associated with chemical crosslinks and active entanglements, respectively. The papers include carefully crafted overviews of the fundamental formulation of the three-dimensional theory from several points of view, and address their equivalences and differences. Also included are solutions to boundary-value problems which are amenable to experimental verification. A further aspect is the elasticity of filaments, stability of equilibrium and thermodynamics of the molecular network theory.


Mechanical Properties Of Aging Soft Tissues

Author by : Brian Derby
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 46
Total Download : 604
File Size : 41,7 Mb
GET BOOK

Description : Exploring the structure and mechanics of aging soft tissues, this edited volume presents authoritative reviews from leading experts on a range of tissues including skin, tendons, vasculature and plantar soft tissues. It provides an overview of in vivo and in vitro measurement techniques including state-of-the-art methodologies, as well as focusing on the structural changes that occur within the main components of these tissues resulting in detrimental mechanical property changes. It also highlights the current challenges of this field, and offers an insight into future developments. Age-related changes in the mechanical properties of soft tissues have a profound effect on human morbidity and mortality, and with changing global demographics, there is growing interest in this area. There has been increasing interest in robustly characterizing these mechanical changes to develop structure-property relationships, and growing awareness of the need for enhanced predictive models for computational simulations. This book seeks to address the challenges involved in applying these engineering techniques to reliably characterize these tissues. Focusing on a wide range of tissues and presenting cutting-edge techniques, this book provides an invaluable reference to academics and researchers in a range of disciplines including biomechanics, materials science, tissue engineering, life sciences and biomedicine.


Biomechanics

Author by : Manuel Doblare
Languange : en
Publisher by : EOLSS Publications
Format Available : PDF, ePub, Mobi
Total Read : 27
Total Download : 703
File Size : 43,7 Mb
GET BOOK

Description : Biomechanics is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The enormous progress in the field of health sciences that has been achieved in the 19th and 20th centuries would have not been possible without the enabling interaction and support of sophisticated technologies that progressively gave rise to a new interdisciplinary field named alternatively as bioengineering or biomedical engineering. Although both terms are synonymous, the latter is less general since it limits the field of application to medicine and clinical practice, while the former covers semantically the whole field of interaction between life sciences and engineering, thus including also applications in biology, biochemistry or the many '-omics'. We use in this book the second, with more general meaning, recalling the very important relation between fundamental science and engineering. And this also recognizes the tremendous economic and social impacts of direct application of engineering in medicine that maintains the health industry as one with the fastest growth in the world economy. Biomechanics, in particular, aims to explain and predict the mechanics of the different components of living beings, from molecules to organisms as well as to design, manufacture and use of any artificial device that interacts with the mechanics of living beings. It helps, therefore, to understand how living systems move, to characterize the interaction between forces and deformation along all spatial scales, to analyze the interaction between structural behavior and microstructure, with the very important particularity of dealing with adaptive systems, able to adapt their internal structure, size and geometry to the particular mechanical environment in which they develop their activity, to understand and predict alterations in the mechanical function due to injuries, diseases or pathologies and, finally, to propose methods of artificial intervention for functional diagnosis or recovery. Biomechanics is today a very highly interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, chemists, material specialists, biologists, medical doctors, etc. They work in many different topics from a purely scientific objective to industrial applications and with an increasing arsenal of sophisticated modeling and experimental tools but always with the final objectives of better understanding the fundamentals of life and improve the quality of life of human beings. One purpose in this volume has been to present an overview of some of these many possible subjects in a self-contained way for a general audience. This volume is aimed at the following major target audiences: University and College Students, Educators, Professional Practitioners, and Research Personnel.


Computer Models In Biomechanics

Author by : Gerhard A. Holzapfel
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 62
Total Download : 285
File Size : 43,7 Mb
GET BOOK

Description : This book contains a collection of papers that were presented at the IUTAM Symposium on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling following aortic coarctation, patient-specific surgery planning for the Fontan procedure - Multiphasic Models: solutes in hydrated biological tissues, reformulation of mixture theory-based poroelasticity for interstitial tissue growth, tumor therapies of brain tissue, remodeling of microcirculation in liver lobes, reactions, mass transport and mechanics of tumor growth, water transport modeling in the brain, crack modeling of swelling porous media - Morphogenesis, Biological Tissues and Organs: mechanisms of brain morphogenesis, micromechanical modeling of anterior cruciate ligaments, mechanical characterization of the human liver, in vivo validation of predictive models for bone remodeling and mechanobiology, bridging scales in respiratory mechanics


Continuum Thermodynamics

Author by : Bettina Albers
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 63
Total Download : 951
File Size : 43,9 Mb
GET BOOK

Description : This second part of Continuum Thermodynamics is designed to match almost one-to-one the chapters of Part I. This is done so that the reader studying thermodynamics will have a deepened understanding of the subjects covered in Part I. The aims of the book are in particular: the illustration of basic features of some simple thermodynamical models such as ideal and viscous fluids, non-Newtonian fluids, nonlinear solids, interactions with electromagnetic fields and diffusive porous materials. A further aim is the illustration of the above subjects by examples and simple solutions of initial and boundary problems as well as simple exercises to develop skills in the construction of interdisciplinary macroscopic models.


Continuum Thermodynamics Part Ii Applications And Examples

Author by : Wilmanski Krzysztof
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 17
Total Download : 611
File Size : 54,7 Mb
GET BOOK

Description : This second part of Continuum Thermodynamics is designed to match almost one-to-one the chapters of Part I. This is done so that the reader studying thermodynamics will have a deepened understanding of the subjects covered in Part I. The aims of the book are in particular: the illustration of basic features of some simple thermodynamical models such as ideal and viscous fluids, non-Newtonian fluids, nonlinear solids, interactions with electromagnetic fields, and diffusive porous materials. A further aim is the illustration of the above subjects by examples and simple solutions of initial and boundary problems as well as simple exercises to develop skills in the construction of interdisciplinary macroscopic models.


Multiscale Modeling In Biomechanics And Mechanobiology

Author by : Suvranu De
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 23
Total Download : 586
File Size : 54,9 Mb
GET BOOK

Description : Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.


Cell And Matrix Mechanics

Author by : Roland Kaunas
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 86
Total Download : 685
File Size : 44,7 Mb
GET BOOK

Description : Explores a Range of Multiscale Biomechanics/Mechanobiology Concepts Cell and Matrix Mechanics presents cutting-edge research at the molecular, cellular, and tissue levels in the field of cell mechanics. This book involves key experts in the field, and covers crucial areas of cell and tissue mechanics, with an emphasis on the roles of mechanical forces in cell–matrix interactions. Providing material in each chapter that builds on the previous chapters, it effectively integrates length scales and contains, for each length scale, key experimental observations and corresponding quantitative theoretical models. Summarizes the Three Hierarchical Levels of Cell Mechanics The book contains 14 chapters and is organized into three sections. The first section focuses on the molecular level, the second section details mechanics at the cellular level, and the third section explores cellular mechanics at the tissue level. The authors offer a thorough description of the roles of mechanical forces in cell and tissue biology, and include specific examples. They incorporate descriptions of associated theoretical models, and provide the data and modeling framework needed for a multi-scale analysis. In addition, they highlight the pioneering studies in cell–matrix mechanics by Albert K. Harris. The topics covered include: The passive and active mechanical properties of cytoskeletal polymers and associated motor proteins along with the behavior of polymer networks The mechanical properties of the cell membrane, with an emphasis on membrane protein activation caused by membrane forces The hierarchical organization of collagen fibrils, revealing that a delicate balance exists between specific and nonspecific interactions to result in a structure with semicrystalline order as well as loose associations The roles of matrix mechanical properties on cell adhesion and function along with different mechanical mechanisms of cell–cell interactions The effects of mechanical loading on cell cytoskeletal remodeling, summarizing various modeling approaches that explain possible mechanisms regulating the alignment of actin stress fibers in response to stretching The mechanical testing of cell-populated collagen matrices, along with theory relating the passive and active mechanical properties of the engineered tissues Cell migration behavior in 3-D matrices and in collective cell motility The role of mechanics in cartilage development The roles of both cellular and external forces on tissue morphogenesis The roles of mechanical forces on tumor growth and cancer metastasis Cell and Matrix Mechanics succinctly and systematically explains the roles of mechanical forces in cell–matrix biology. Practitioners and researchers in engineering and physics, as well as graduate students in biomedical engineering and mechanical engineering related to mechanobiology, can benefit from this work.


Modeling Tumor Vasculature

Author by : Trachette L. Jackson
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 77
Total Download : 250
File Size : 50,6 Mb
GET BOOK

Description : To profoundly understand biology and harness its intricacies for human benefit and the mitigation of human harm requires cross-disciplinary approaches that incorporate sophisticated computational and mathematical modeling techniques. These integrative strategies are essential to achieve rapid and significant progress in issues, in health and disease, which span molecular, cellular and tissue levels. The use of mathematical models to describe various aspects of tumor growth has a very long history, dating back over six decades. Recently, however, experimental and computational advances have improved our in the understanding of how processes act at multiple scales to mediate the development of tumor vasculature and drive the advancement of cancer. This book will showcase the development and utilization of new computational and mathematical approaches to address multiscale challenges associated with tumor vascular development. In Part I: Cell Signaling and Molecular Aspects of Tumor Blood Vessel Formation, it will be come clear that mathematical modeling can help to biochemically and biomechanically phenotype one of the most important cell types involved in cancer progression: vascular endothelial cells. When subverted by the tumor modulated environment, vascular endothelial cells form a new vascular supply capable of nourishing and translocating cancer cells to other tissues. The models in Part I illustrate the importance of quantitative approaches for gaining a deeper understanding of how normal and abnormal aspects of signal integration culminate in the cell proliferation, migration, and survival decisions that result in pathological tumor angiogenesis. The focus of Part II is the angiogenesis cascade and all of its complexities. Successful angiogenesis is mediated by the intricate interplay between biochemical and biomechanical mechanisms, including cell-cell and cell-matrix interactions, cell surface receptor binding, and intracellular signal transduction. A major challenge facing the cancer research community is to integrate known information in a way that improves our understanding of the principal underpinnings driving tumor angiogenesis and that will advance efforts aimed at the development of new therapies for treating cancer. The chapters in Part II will highlight several mathematical and computational approaches for that can potentially address this challenge. While the first two thirds of the book’s chapters demonstrate how important insights can be gained by studying cell signaling and vascular morphology and function, the series of chapters in Part III: Whole Organ Modeling of Tumor Growth and Vasculature, will integrate vasculature development with tumor growth dynamics. These two processes strongly depend on one another in ways that can only be theoretically investigated by biophysical approaches that cut across several levels of biological organization and describe both the tumor and the developing vasculature as they co-evolve. The purpose of this edited volume is not to provide a comprehensive review of all modeling efforts that address tumor vascular modeling; instead, a variety of interesting and innovative mathematical modeling approaches for understanding the development and effects of tumor vasculature are highlighted in order to illustrate some of the emerging trends in the field.


Numerical Methods And Advanced Simulation In Biomechanics And Biological Processes

Author by : Miguel Cerrolaza
Languange : en
Publisher by : Academic Press
Format Available : PDF, ePub, Mobi
Total Read : 72
Total Download : 983
File Size : 51,5 Mb
GET BOOK

Description : Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. Provides non-conventional analysis methods for modeling Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) Includes contributions from several world renowned experts in their fields Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems


Old Questions And Young Approaches To Animal Evolution

Author by : José M. Martín-Durán
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 44
Total Download : 276
File Size : 44,5 Mb
GET BOOK

Description : Animal evolution has always been at the core of Biology, but even today many fundamental questions remain open. The field of animal ‘evo-devo’ is leveraging recent technical and conceptual advances in development, paleontology, genomics and transcriptomics to propose radically different answers to traditional evolutionary controversies. This book is divided into four parts, each of which approaches animal evolution from a different perspective. The first part (chapters 2 and 3) investigates how new sources of evidence have changed conventional views of animal origins, while the second (chapters 4–8) addresses the connection between embryogenesis and evolution, and the genesis of cellular, tissue and morphological diversity. The third part (chapters 9 and 10) investigates how big data in molecular biology is transforming our understanding of the mechanisms governing morphological change in animals. In closing, the fourth part (chapters 11–13) explores new theoretical and conceptual approaches to animal evolution. ‘Old questions and young approaches to animal evolution’ offers a comprehensive and updated view of animal evolutionary biology that will serve both as a first step into this fascinating field for students and university educators, and as a review of complementary approaches for researchers.


Mechanics Of Soft Materials

Author by : Konstantin Volokh
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 53
Total Download : 836
File Size : 46,8 Mb
GET BOOK

Description : This book provides a concise introduction to soft matter modelling, together with an up-to-date review of the continuum mechanical description of soft and biological materials, from the basics to the latest scientific materials. It also includes multi-physics descriptions, such as chemo-, thermo-, and electro-mechanical coupling. The new edition includes a new chapter on fractures as well as numerous corrections, clarifications and new solutions. Based on a graduate course taught for the past few years at Technion, it presents original explanations for a number of standard materials, and features detailed examples to complement all topics discussed.


International Review Of Cell And Molecular Biology

Author by : Kwang W. Jeon
Languange : en
Publisher by : Academic Press
Format Available : PDF, ePub, Mobi
Total Read : 72
Total Download : 681
File Size : 50,8 Mb
GET BOOK

Description : International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology--both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Impact factor for 2009: 6.088. Authored by some of the foremost scientists in the field Provides up-to-date information and directions for future research Valuable reference material for advanced undergraduates, graduate students and professional scientists


Cellular And Biomolecular Mechanics And Mechanobiology

Author by : Amit Gefen
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 70
Total Download : 367
File Size : 41,7 Mb
GET BOOK

Description : This book describes these exciting new developments, and presents experimental and computational findings that altogether describe the frontier of knowledge in cellular and biomolecular mechanics, and the biological implications, in health and disease. The book is written for bioengineers with interest in cellular mechanics, for biophysicists, biochemists, medical researchers and all other professionals with interest in how cells produce and respond to mechanical loads.


Biomechanics Of Musculoskeletal Injury

Author by : William Charles Whiting
Languange : en
Publisher by : Human Kinetics
Format Available : PDF, ePub, Mobi
Total Read : 16
Total Download : 342
File Size : 55,6 Mb
GET BOOK

Description : This edition presents the basic mechanics of injury, function of the musculoskeletal system and the effects of injury on connective tissue which often tends to be involved in the injury process.


Stem Cell Biology And Regenerative Medicine Second Edition

Author by : Charles Durand
Languange : en
Publisher by : River Publishers
Format Available : PDF, ePub, Mobi
Total Read : 96
Total Download : 524
File Size : 46,9 Mb
GET BOOK

Description : The study of stem cell biology is under intensive investigation. Because stem cells have the unique capability to self-renew and differentiate into one or several cell types, they play a critical role in development, tissue homeostasis and regeneration. Stem cells also constitute promising cell candidates for cell and gene therapy. The aim of this book is to provide readers and researchers with timely and accurate knowledge on stem cell biology and regenerative medicine. This book will cover many topics in the field and is based on conferences given by recognized scientists involved in the international master course on stem cell biology at Sorbonne Université in Paris.


Biophysics

Author by : Mark C. Leake
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 37
Total Download : 779
File Size : 50,9 Mb
GET BOOK

Description : An Up-to-Date Toolbox for Probing Biology Biophysics: Tools and Techniques covers the experimental and theoretical tools and techniques of biophysics. It addresses the purpose, science, and application of all physical science instrumentation and analysis methods used in current research labs. The book first presents the historical background, concepts, and motivation for using a physical science toolbox to understand biology. It then familiarizes students from the physical sciences with essential biological knowledge. The text subsequently focuses on experimental biophysical techniques that primarily detect biological components or measure/control biological forces. The author describes the science and application of key tools used in imaging, detection, general quantitation, and biomolecular interaction studies, which span multiple length and time scales of biological processes both in the test tube and in the living organism. Moving on to theoretical biophysics tools, the book presents computational and analytical mathematical methods for tackling challenging biological questions. It concludes with a discussion of the future of this exciting field. Future innovators will need to be trained in multidisciplinary science to be successful in industry, academia, and government support agencies. Addressing this challenge, this textbook educates future leaders on the development and application of novel physical science approaches to solve complex problems linked to biological questions.


5th European Conference Of The International Federation For Medical And Biological Engineering 14 18 September 2011 Budapest Hungary

Author by : Ákos Jobbágy
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 95
Total Download : 883
File Size : 42,8 Mb
GET BOOK

Description : This volume presents the 5th European Conference of the International Federation for Medical and Biological Engineering (EMBEC), held in Budapest, 14-18 September, 2011. The scientific discussion on the conference and in this conference proceedings include the following issues: - Signal & Image Processing - ICT - Clinical Engineering and Applications - Biomechanics and Fluid Biomechanics - Biomaterials and Tissue Repair - Innovations and Nanotechnology - Modeling and Simulation - Education and Professional