Data Analysis For Social Science And Marketing Research Using Python

Author by : Manoj Morais
Languange : en
Publisher by : Createspace Independent Publishing Platform
Format Available : PDF, ePub, Mobi
Total Read : 32
Total Download : 536
File Size : 49,6 Mb
GET BOOK

Description : The book is written for researchers in social science and marketing field, especially for those with little or no knowledge in computer programming. Data analytics has become part and parcel in the contemporary technologically fast paced world. We have amazing tools and software that allow us to analyse data available in various formats. However, most of the popular paid software and packages for data analysis is not affordable or not even accessible for the students, researchers. This is true in the case of many NGOs and agencies how are involved in community based research in developing countries. We have popular open source platforms and tools such as R and Python for data analysis. This book makes use of Python because of its simplicity, adaptability, broader scope and greater potential in advanced data mining and text mining contexts. We found it as a need to educate and train the researchers from social science and marketing research background, so that they could make use of Python, a promising tool to meet simple to extremely complex data analyses needs free of cost. The learnings from this book will not only help them in doing their conventional data analyses but also enable them to pursue advanced knowledge in machine learning algorithms, text analytics and other new generation techniques with the support of freely accessible open source platforms. Since the objective of the book is to educate the researchers with no programming background, we have made every effort to give hands-on experience in learning some basic coding in Python, which is sufficient for the readers to follow the book. The step-by-step procedure to do various data processing and analysis described in this book will make it easy for the users. Apart from that, we have tried our level best to give explanations on specific codes and how they perform to get us the desired output. We also request you to give you valuable comments and suggestions on the book, via our blog, so that we could improve the same in the upcoming volumes. We commit ourselves to providing explanations to the readers' questions related to the codes and analysis provided in this book. The book specifically deals with data sets of row and column format, as the general format commonly used in social science research, which most of the researchers are familiar with. So we do not work with arrays and dictionaries, except in one or two occasions (only to make you familiar with that) instead prefer to make use of Excel data and pandas data frame. The book consists of thirteen chapters. The first chapter gives an introduction to Python and its relevance and scope in contemporary data analysis contexts. Ch. 2 teaches the basics and Python coding, Ch. 3-7, provide a step-by-step narration of how to enter data, process it, preliminary analysis and data cleaning with the help of Python, Ch.8-9, present data visualizations and narration techniques using Python; Ch.10.demonstrate how Python can use for statistical analysis. The remaining chapters are focusing on giving more real life situations in data analysis and the practical solutions to handle them. The exercises provided in the book are similar to real analysis situations, and that will help the reader for an easy transition to the data analyst jobs. The authors have taken utmost care identifying and providing solutions to all practical difficulties the readers may face while using Python for data analysis purpose. The authors have developed a series of codes and have incorporated them to make data processing and analysis convenient and easy for the researchers. The self-learning materials given in this book will help social science and marketing researchers to deepen their understanding of various steps in data processing and analyses and to gain advanced skills in using Python for this purpose.


Marketing Data Science

Author by : Thomas W. Miller
Languange : en
Publisher by : FT Press
Format Available : PDF, ePub, Mobi
Total Read : 38
Total Download : 228
File Size : 40,6 Mb
GET BOOK

Description : Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.


Python For Marketing Research And Analytics

Author by : Jason S. Schwarz
Languange : en
Publisher by : Springer Nature
Format Available : PDF, ePub, Mobi
Total Read : 20
Total Download : 851
File Size : 55,7 Mb
GET BOOK

Description : This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.


The Routledge Companion To Marketing Research

Author by : Len Tiu Wright
Languange : en
Publisher by : Routledge
Format Available : PDF, ePub, Mobi
Total Read : 10
Total Download : 913
File Size : 55,6 Mb
GET BOOK

Description : This single-volume reference provides an alternative to traditional marketing research methods handbooks, focusing entirely on the new and innovative methods and technologies that are transforming marketing research and practice. Including original contributions and case studies from leading global specialists, this handbook covers many pioneering methods, such as: Methods for the analysis of user- and customer-generated data, including opinion mining and sentiment analysis Big data Neuroscientific techniques and physiological measures Voice prints Human–computer interaction Emerging approaches such as shadowing, netnographies and ethnographies Transcending the old divisions between qualitative and quantitative research methods, this book is an essential tool for market researchers in academia and practice.


Introduction To Python Programming For Business And Social Science Applications

Author by : Frederick Kaefer
Languange : en
Publisher by : SAGE Publications
Format Available : PDF, ePub, Mobi
Total Read : 98
Total Download : 188
File Size : 43,8 Mb
GET BOOK

Description : Would you like to gather big datasets, analyze them, and visualize the results, all in one program? If this describes you, then Introduction to Python Programming for Business and Social Science Applications is the book for you. Authors Frederick Kaefer and Paul Kaefer walk you through each step of the Python package installation and analysis process, with frequent exercises throughout so you can immediately try out the functions you’ve learned. Written in straightforward language for those with no programming background, this book will teach you how to use Python for your research and data analysis. Instead of teaching you the principles and practices of programming as a whole, this application-oriented text focuses on only what you need to know to research and answer social science questions. The text features two types of examples, one set from the General Social Survey and one set from a large taxi trip dataset from a major metropolitan area, to help readers understand the possibilities of working with Python. Chapters on installing and working within a programming environment, basic skills, and necessary commands will get you up and running quickly, while chapters on programming logic, data input and output, and data frames help you establish the basic framework for conducting analyses. Further chapters on web scraping, statistical analysis, machine learning, and data visualization help you apply your skills to your research. More advanced information on developing graphical user interfaces (GUIs) help you create functional data products using Python to inform general users of data who don’t work within Python. First there was IBM® SPSS®, then there was R, and now there′s Python. Statistical software is getting more aggressive - let authors Frederick Kaefer and Paul Kaefer help you tame it with Introduction to Python Programming for Business and Social Science Applications.


New Trends In Databases And Information Systems

Author by : András Benczúr
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 41
Total Download : 863
File Size : 40,6 Mb
GET BOOK

Description : This book constitutes the thoroughly refereed short papers, workshops and doctoral consortium papers of the 22th European Conference on Advances in Databases and Information Systems, ADBIS 2018, held in Budapest, Hungary, in September 2018. The 20 full and the 4 short workshop papers as well as the 3 doctoral consortium papers were carefully reviewed and selected from 54 submissions to the workshops and 6 submissions to the doctoral consortium. Furthermore, there are 10 short papers included, which were accepted for the main conference. The papers are organized according to the 6 workshops and the doctoral consortium: ADBIS 2018 short papers; First Workshop on Advances on Big Data Management, Analytics, Data Privacy and Security, BigDataMAPS 2018; First International Workshop on New Frontiers on Meta-data Management and Usage, M2U 2018; First Citizen Science Applications and Citizen Databases Workshop, CSADB 2018; First International Workshop on Articial Intelligence for Question Answering, AI*QA 2018; First International Workshop on BIG Data Storage, Processing and Mining for Personalized MEDicine, BIGPMED 2018; First Workshop on Current Trends in Contemporary Information Systems and Their Architectures, ISTREND 2018; Doctoral Consortium.


Text Mining

Author by : Gabe Ignatow
Languange : en
Publisher by : SAGE Publications
Format Available : PDF, ePub, Mobi
Total Read : 61
Total Download : 348
File Size : 51,6 Mb
GET BOOK

Description : Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively. Available with Perusall—an eBook that makes it easier to prepare for class Perusall is an award-winning eBook platform featuring social annotation tools that allow students and instructors to collaboratively mark up and discuss their SAGE textbook. Backed by research and supported by technological innovations developed at Harvard University, this process of learning through collaborative annotation keeps your students engaged and makes teaching easier and more effective. Learn more.


Comparative Approaches To Using R And Python For Statistical Data Analysis

Author by : Sarmento, Rui
Languange : en
Publisher by : IGI Global
Format Available : PDF, ePub, Mobi
Total Read : 78
Total Download : 939
File Size : 49,6 Mb
GET BOOK

Description : The application of statistics has proliferated in recent years and has become increasingly relevant across numerous fields of study. With the advent of new technologies, its availability has opened into a wider range of users. Comparative Approaches to using R and Python for Statistical Data Analysis is a comprehensive source of emerging research and perspectives on the latest computer software and available languages for the visualization of statistical data. By providing insights on relevant topics, such as inference, factor analysis, and linear regression, this publication is ideally designed for professionals, researchers, academics, graduate students, and practitioners interested in the optimization of statistical data analysis.


Data Science

Author by : Jianchao Zeng
Languange : en
Publisher by : Springer Nature
Format Available : PDF, ePub, Mobi
Total Read : 55
Total Download : 416
File Size : 54,5 Mb
GET BOOK

Description : This two volume set (CCIS 1257 and 1258) constitutes the refereed proceedings of the 6th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2020 held in Taiyuan, China, in September 2020. The 98 papers presented in these two volumes were carefully reviewed and selected from 392 submissions. The papers are organized in topical sections: database, machine learning, network, graphic images, system, natural language processing, security, algorithm, application, and education. The chapter “Highly Parallel SPARQL Engine for RDF” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Research Methods In Library And Information Science 6th Edition

Author by : Lynn Silipigni Connaway
Languange : en
Publisher by : ABC-CLIO
Format Available : PDF, ePub, Mobi
Total Read : 14
Total Download : 750
File Size : 51,7 Mb
GET BOOK

Description : An essential resource for LIS master's and doctoral students, new LIS faculty, and academic librarians, this book provides expert guidance and practical examples based on current research about quantitative and qualitative research methods and design. Conducting research and successfully publishing the findings is a goal of many professionals and students in library and information science (LIS). Using the best methodology maximizes the likelihood of a successful outcome. This outstanding book broadly covers the principles, data collection techniques, and analyses of quantitative and qualitative methods as well as the advantages and limitations of each method to research design. It addresses these research methods and design by discussing the scientific method, sampling techniques, validity, reliability, and ethical concerns along with additional topics such as experimental research design, ethnographic methods, and usability testing. The book presents comprehensive information in a logical, easy-to-follow format, covering topics such as research strategies for library and information science doctoral students; planning for research; defining the problem, forming a theory, and testing the theory; the scientific method of inquiry and data collection techniques; survey research methods and questionnaires; analyzing quantitative data; interview-based research; writing research proposals; and even time management skills. LIS students and professionals can consult the text for instruction on conducting research using this array of tools as well as for guidance in critically reading and evaluating research publications, proposals, and reports. The explanations and current research examples supplied by discipline experts offer advice and strategies for completing research projects, dissertations, and theses as well as for writing grants, overcoming writer's block, collaborating with colleagues, and working with outside consultants. The answer to nearly any question posed by novice researchers is provided in this book. Now in its sixth edition, the book provides new and updated content that is even more comprehensive than before and contains added sections featuring the voices of prominent LIS scholars, researchers, and editors "Voices of the Experts" text boxes provide researchers' advice on specific methods and identify what was most important or most valuable about using a particular method and software for analysis—e.g., NVivo, SurveyMonkey, and log capture Written by coauthors with extensive expertise in research design, securing grant funding, and using the latest technology and data analysis software


Python Social Media Analytics

Author by : Siddhartha Chatterjee
Languange : en
Publisher by : Packt Publishing Ltd
Format Available : PDF, ePub, Mobi
Total Read : 91
Total Download : 734
File Size : 43,8 Mb
GET BOOK

Description : Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approach This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.


Python For Marketing Research And Analytics

Author by : Jason S. Schwarz
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 22
Total Download : 324
File Size : 54,6 Mb
GET BOOK

Description : This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.


Data Analytics Applications In Gaming And Entertainment

Author by : Günter Wallner
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 73
Total Download : 150
File Size : 53,6 Mb
GET BOOK

Description : The last decade has witnessed the rise of big data in game development as the increasing proliferation of Internet-enabled gaming devices has made it easier than ever before to collect large amounts of player-related data. At the same time, the emergence of new business models and the diversification of the player base have exposed a broader potential audience, which attaches great importance to being able to tailor game experiences to a wide range of preferences and skill levels. This, in turn, has led to a growing interest in data mining techniques, as they offer new opportunities for deriving actionable insights to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation. By now, data mining and analytics have become vital components of game development. The amount of work being done in this area nowadays makes this an ideal time to put together a book on this subject. Data Analytics Applications in Gaming and Entertainment seeks to provide a cross section of current data analytics applications in game production. It is intended as a companion for practitioners, academic researchers, and students seeking knowledge on the latest practices in game data mining. The chapters have been chosen in such a way as to cover a wide range of topics and to provide readers with a glimpse at the variety of applications of data mining in gaming. A total of 25 authors from industry and academia have contributed 12 chapters covering topics such as player profiling, approaches for analyzing player communities and their social structures, matchmaking, churn prediction and customer lifetime value estimation, communication of analytical results, and visual approaches to game analytics. This book’s perspectives and concepts will spark heightened interest in game analytics and foment innovative ideas that will advance the exciting field of online gaming and entertainment.


Research Methods In Library And Information Science 7th Edition

Author by : Lynn Silipigni Connaway
Languange : en
Publisher by : ABC-CLIO
Format Available : PDF, ePub, Mobi
Total Read : 77
Total Download : 753
File Size : 46,7 Mb
GET BOOK

Description : The seventh edition of this frequently adopted textbook features new or expanded sections on social justice research, data analysis software, scholarly identity research, social networking, data science, and data visualization, among other topics. It continues to include discipline experts' voices. The revised seventh edition of this popular text provides instruction and guidance for professionals and students in library and information science who want to conduct research and publish findings, as well as for practicing professionals who want a broad overview of the current literature. Providing a broad introduction to research design, the authors include principles, data collection techniques, and analyses of quantitative and qualitative methods, as well as advantages and limitations of each method and updated bibliographies. Chapters cover the scientific method, sampling, validity, reliability, and ethical concerns along with quantitative and qualitative methods. LIS students and professionals will consult this text not only for instruction on conducting research but also for guidance in critically reading and evaluating research publications, proposals, and reports. As in the previous edition, discipline experts provide advice, tips, and strategies for completing research projects, dissertations, and theses; writing grants; overcoming writer's block; collaborating with colleagues; and working with outside consultants. Journal and book editors discuss how to publish and identify best practices and understudied topics, as well as what they look for in submissions. Features new or expanded sections on social justice research; virtual collaboration, data collection, and dissemination; scholarly communication; computer-assisted qualitative and quantitative data analysis; scholarly identity research and guidelines; data science; and visualization of quantitative and qualitative data Provides a broad and comprehensive overview and update, especially of research published over the past five years Highlights school, public, and academic research findings Relies on the coauthors' expertise in research design, securing grant funding, and using the latest technology and data analysis software


Modeling Techniques In Predictive Analytics With Python And R

Author by : Thomas W. Miller
Languange : en
Publisher by : FT Press
Format Available : PDF, ePub, Mobi
Total Read : 65
Total Download : 175
File Size : 55,9 Mb
GET BOOK

Description : Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more


Large Scale Machine Learning With Python

Author by : Bastiaan Sjardin
Languange : en
Publisher by : Packt Publishing Ltd
Format Available : PDF, ePub, Mobi
Total Read : 74
Total Download : 602
File Size : 42,5 Mb
GET BOOK

Description : Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.


Basic Research Methods For Librarians Fifth Edition

Author by : Lynn Silipigni Connaway
Languange : en
Publisher by : ABC-CLIO
Format Available : PDF, ePub, Mobi
Total Read : 79
Total Download : 535
File Size : 44,8 Mb
GET BOOK

Description : Addressed to practicing librarians and other information professionals, as well as master's and doctoral students in LIS programs, Basic Research Methods for Librarians, Fifth Edition specifically covers the research methodologies likely to be used by librarians, providing guidance on designing and conducting research and publishing research results. ||Like its predecessors, this fifth edition is exceptionally comprehensive. Content has been thoroughly updated and sections have been added on social networking and other web-based research methods and techniques. The book emphasizes quantitative research, including survey and experimental studies. It also gives attention to qualitative research, including historical research. A chapter is devoted to the statistical analysis of research results. Evaluation, writing, and publishing of research reports are considered as well. Coauthored by distinguished researchers in library and information science, the book also includes contributions from experts on qualitative research, domain assumptions of research, and sampling.


Data Science And Analytics With Python R And Spss Programming

Author by : V.K. Jain
Languange : en
Publisher by : KHANNA PUBLISHING HOUSE
Format Available : PDF, ePub, Mobi
Total Read : 53
Total Download : 899
File Size : 53,9 Mb
GET BOOK

Description : The Book has been written completely as per AICTE recommended syllabus on "Data Sciences". SALIENT FEATURES OF THE BOOK: Explains how data is collected, managed and stored for data science. With complete courseware for understand the key concepts in data science including their real-world applications and the toolkit used by data scientists. Implement data collection and management. Provided with state of the arts subjectwise. With all required tutorials on R, Python and Bokeh, Anaconda, IBM SPSS-21 and Matplotlib.


Data Science Fundamentals And Practical Approaches

Author by : Dr. Gypsy Nandi
Languange : en
Publisher by : BPB Publications
Format Available : PDF, ePub, Mobi
Total Read : 73
Total Download : 376
File Size : 47,9 Mb
GET BOOK

Description : Learn how to process and analysis data using Python KEY FEATURES - The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. - The book is not just dealing with the background mathematics alone or only the programs but beautifully correlates the background mathematics to the theory and then finally translating it into the programs. - A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. DESCRIPTION This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. WHAT WILL YOU LEARN Perform processing on data for making it ready for visual plot and understand the pattern in data over time. Understand what machine learning is and how learning can be incorporated into a program. Know how tools can be used to perform analysis on big data using python and other standard tools. Perform social media analytics, business analytics, and data analytics on any data of a company or organization. WHO THIS BOOK IS FOR The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. TABLE OF CONTENTS 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics


Data Science Fundamentals And Practical Approaches

Author by : Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma
Languange : en
Publisher by : BPB Publications
Format Available : PDF, ePub, Mobi
Total Read : 20
Total Download : 108
File Size : 47,8 Mb
GET BOOK

Description : Learn how to process and analysis data using Python Key Features a- The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. a- The book is quite well balanced with programs and illustrative real-case problems. a- The book not only deals with the background mathematics alone or only the programs but also beautifully correlates the background mathematics to the theory and then finally translating it into the programs. a- A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. Description This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. What will you learn a- Understand what machine learning is and how learning can be incorporated into a program. a- Perform data processing to make it ready for visual plot to understand the pattern in data over time. a- Know how tools can be used to perform analysis on big data using python a- Perform social media analytics, business analytics, and data analytics on any data of a company or organization. Who this book is for The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. Table of Contents 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics About the Authors Dr. Gypsy Nandi is an Assistant Professor (Sr) in the Department of Computer Applications, Assam Don Bosco University, India. Her areas of interest include Data Science, Social Network Mining, and Machine Learning. She has completed her Ph.D. in the field of 'Social Network Analysis and Mining'. Her research scholars are currently working mainly in the field of Data Science. She has several research publications in reputed journals and book series. Dr. Rupam Kumar Sharma is an Assistant Professor in the Department of Computer Applications, Assam Don Bosco University, India. His area of interest includes Machine Learning, Data Analytics, Network, and Cyber Security. He has several research publications in reputed SCI and Scopus journals. He has also delivered lectures and trained hundreds of trainees and students across different institutes in the field of security and android app development.


Contemporary Sport Management

Author by : Paul M. Pedersen
Languange : en
Publisher by : Human Kinetics
Format Available : PDF, ePub, Mobi
Total Read : 52
Total Download : 294
File Size : 47,9 Mb
GET BOOK

Description : Contemporary Sport Management, Seventh Edition, delivers a complete overview of sport management with a diverse team of contributors. Readers are introduced to all aspects of the field they need to know as they prepare for a career in sport management


Hybrid Intelligent Systems

Author by : Ajith Abraham
Languange : en
Publisher by : Springer Nature
Format Available : PDF, ePub, Mobi
Total Read : 51
Total Download : 884
File Size : 54,8 Mb
GET BOOK

Description : This book highlights the recent research on hybrid intelligent systems and their various practical applications. It presents 58 selected papers from the 20th International Conference on Hybrid Intelligent Systems (HIS 2020) and 20 papers from the 12th World Congress on Nature and Biologically Inspired Computing (NaBIC 2020), which was held online, from December 14 to 16, 2020. A premier conference in the field of artificial intelligence, HIS - NaBIC 2020 brought together researchers, engineers and practitioners whose work involves intelligent systems, network security and their applications in industry. Including contributions by authors from 25 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of science and engineering.


Computational Social Science In The Age Of Big Data

Author by : Martin Welker
Languange : en
Publisher by : Herbert von Halem Verlag
Format Available : PDF, ePub, Mobi
Total Read : 86
Total Download : 870
File Size : 54,5 Mb
GET BOOK

Description : Der Sammelband Computational Social Science in the Age of Big Data beschäftigt sich mit Konzepten, Methoden, Tools und Anwendungen (automatisierter) datengetriebener Forschung mit sozialwissenschaftlichem Hintergrund. Der Fokus des Bandes liegt auf der Etablierung der Computational Social Science (CSS) als aufkommendes Forschungs- und Anwendungsfeld. Es werden Beiträge international namhafter Autoren präsentiert, die forschungs- und praxisrelevante Themen dieses Bereiches besprechen. Die Herausgeber forcieren dabei einen interdisziplinären Zugang zum Feld, der sowohl Online-Forschern aus der Wissenschaft wie auch aus der angewandten Marktforschung einen Einstieg bietet.


Text Analysis In Python For Social Scientists

Author by : Dirk Hovy
Languange : en
Publisher by : Cambridge University Press
Format Available : PDF, ePub, Mobi
Total Read : 76
Total Download : 113
File Size : 54,5 Mb
GET BOOK

Description : Text is everywhere, and it is a fantastic resource for social scientists. However, because it is so abundant, and because language is so variable, it is often difficult to extract the information we want. There is a whole subfield of AI concerned with text analysis (natural language processing). Many of the basic analysis methods developed are now readily available as Python implementations. This Element will teach you when to use which method, the mathematical background of how it works, and the Python code to implement it.


Data Analysis With Python

Author by : David Taieb
Languange : en
Publisher by : Packt Publishing Ltd
Format Available : PDF, ePub, Mobi
Total Read : 20
Total Download : 452
File Size : 49,6 Mb
GET BOOK

Description : Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis. Key Features Bridge your data analysis with the power of programming, complex algorithms, and AI Use Python and its extensive libraries to power your way to new levels of data insight Work with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time series Explore this modern approach across with key industry case studies and hands-on projects Book Description Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You'll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You'll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects. Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you’re likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis - pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You'll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence. What you will learn A new toolset that has been carefully crafted to meet for your data analysis challenges Full and detailed case studies of the toolset across several of today’s key industry contexts Become super productive with a new toolset across Python and Jupyter Notebook Look into the future of data science and which directions to develop your skills next Who this book is for This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development.


Applied Univariate Bivariate And Multivariate Statistics Using Python

Author by : Daniel J. Denis
Languange : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 45
Total Download : 702
File Size : 47,5 Mb
GET BOOK

Description : Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.


Social Network Analysis For Startups

Author by : Maksim Tsvetovat
Languange : en
Publisher by : "O'Reilly Media, Inc."
Format Available : PDF, ePub, Mobi
Total Read : 81
Total Download : 739
File Size : 43,6 Mb
GET BOOK

Description : Does your startup rely on social network analysis? This concise guide provides a statistical framework to help you identify social processes hidden among the tons of data now available. Social network analysis (SNA) is a discipline that predates Facebook and Twitter by 30 years. Through expert SNA researchers, you'll learn concepts and techniques for recognizing patterns in social media, political groups, companies, cultural trends, and interpersonal networks. You'll also learn how to use Python and other open source tools—such as NetworkX, NumPy, and Matplotlib—to gather, analyze, and visualize social data. This book is the perfect marriage between social network theory and practice, and a valuable source of insight and ideas. Discover how internal social networks affect a company’s ability to perform Follow terrorists and revolutionaries through the 1998 Khobar Towers bombing, the 9/11 attacks, and the Egyptian uprising Learn how a single special-interest group can control the outcome of a national election Examine relationships between companies through investment networks and shared boards of directors Delve into the anatomy of cultural fads and trends—offline phenomena often mediated by Twitter and Facebook


Python Real World Machine Learning

Author by : Prateek Joshi
Languange : en
Publisher by : Packt Publishing Ltd
Format Available : PDF, ePub, Mobi
Total Read : 85
Total Download : 194
File Size : 44,6 Mb
GET BOOK

Description : Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!


Challenges And Applications Of Data Analytics In Social Perspectives

Author by : Sathiyamoorthi, V.
Languange : en
Publisher by : IGI Global
Format Available : PDF, ePub, Mobi
Total Read : 24
Total Download : 100
File Size : 44,5 Mb
GET BOOK

Description : With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.


Learning R

Author by : Richard Cotton
Languange : en
Publisher by : "O'Reilly Media, Inc."
Format Available : PDF, ePub, Mobi
Total Read : 25
Total Download : 978
File Size : 54,5 Mb
GET BOOK

Description : Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, you’ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what you’ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code