Direct Methanol Fuel Cell Technology

Direct Methanol Fuel Cell Technology
Author: Kingshuk Dutta
Publsiher: Elsevier
Total Pages: 564
Release: 2020-02-25
ISBN: 0128191597
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Direct Methanol Fuel Cell Technology Book Excerpt:

Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology
Author: Christoph Hartnig,Christina Roth
Publsiher: Elsevier
Total Pages: 516
Release: 2012-02-20
ISBN: 085709548X
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Book Excerpt:

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods

Direct Methanol Fuel Cells

Direct Methanol Fuel Cells
Author: Electrochemical Society. Energy Technology Division,Electrochemical Society. Physical Electrochemistry Division,Electrochemical Society. Battery Division,Electrochemical Society. Meeting
Publsiher: Unknown
Total Pages: 350
Release: 2001
ISBN: 1928374650XXX
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Direct Methanol Fuel Cells Book Excerpt:

"Energy Technology, Physical Electrochemistry and Battery Divisions."

Direct Methanol Fuel Cells

Direct Methanol Fuel Cells
Author: Antonio Salvatore Aricò,Vincenzo Baglio,Vincenzo Antonucci
Publsiher: Nova Science Pub Incorporated
Total Pages: 179
Release: 2010
ISBN: 9781608768653
Category: Science
Language: EN, FR, DE, ES & NL

Direct Methanol Fuel Cells Book Excerpt:

This book deals with an analysis of materials issues, status of technologies and potential applications of direct methanol fuel cells. The principle of operation of direct methanol fuel cells and the status of knowledge in the basic research areas are presented. The technology of direct methanol fuel cells is discussed in this book with particular regard to fabrication methodologies for the manufacturing of catalysts, electrolytes membrane-electrode assemblies, stack hardware and system design.

Electrocatalysis of Direct Methanol Fuel Cells

Electrocatalysis of Direct Methanol Fuel Cells
Author: Jiujun Zhang,Hansan Liu
Publsiher: John Wiley & Sons
Total Pages: 582
Release: 2009-10-26
ISBN: 3527323775
Category: Science
Language: EN, FR, DE, ES & NL

Electrocatalysis of Direct Methanol Fuel Cells Book Excerpt:

This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture oft he current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.

Review on Micro Direct Methanol Fuel Cells

Review on Micro Direct Methanol Fuel Cells
Author: Daniela Falcão,Alexandra Pinto
Publsiher: LAP Lambert Academic Publishing
Total Pages: 52
Release: 2015-02-18
ISBN: 9783659343902
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Review on Micro Direct Methanol Fuel Cells Book Excerpt:

Fuel cells have unique technological attributes: efficiency, minimization of moving parts and low emissions. The Direct Methanol Fuel Cell (DMFC) has attracted much attention due to its potential applications as a power source for transportation and portable electronic devices. With the advance of micromachining technologies, miniaturization of power sources became one of the trends of evolution of research in this area. Based on the advantages of the scaling laws, miniaturization promises higher efficiency and performance of power generating devices, therefore, Micro-DMFC is an emergent technology. There has been a growing interest in the development of this type of micro cells in the last years, resulting both in experimental studies (operating conditions, cell design and new materials) and in modeling studies. Despite the increase in the knowledge acquired, many challenges are still to be reached. This book provides a detailed comprehensive review both on fundamental and technological aspects of Micro-DMFC. Special attention is devoted to systematization of published results on experimental area and also to a special section dedicated to modeling studies.

Direct Methanol Fuel Cells for Transportation Applications Quarterly Technical Report April June 1997

Direct Methanol Fuel Cells for Transportation Applications  Quarterly Technical Report  April  June 1997
Author: Anonim
Publsiher: Unknown
Total Pages: 24
Release: 1997
ISBN: 1928374650XXX
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Direct Methanol Fuel Cells for Transportation Applications Quarterly Technical Report April June 1997 Book Excerpt:

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA's) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

Author: Laszlo George,מ. ברקאי
Publsiher: Unknown
Total Pages: 34
Release: 196?
ISBN: 1928374650XXX
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Book Excerpt:

Direct Methanol Fuel Cells

Direct Methanol Fuel Cells
Author: Rose Hernandez,Caryl Dunning
Publsiher: Nova Science Publishers
Total Pages: 171
Release: 2017
ISBN: 9781536126037
Category: Direct methanol fuel cells
Language: EN, FR, DE, ES & NL

Direct Methanol Fuel Cells Book Excerpt:

In Chapter One, L. Khotseng and G. Vaivars provide an overview of the recent advances in electrocatalysts for direct methanol fuel cells for both anode and cathode catalysts in order to present direct methanol fuel cells as an alternative power source for portable devices. In Chapter Two, Nobuyoshi Nakagawa, Mohammad Ali Abdelkareem, Takuya Tsujiguchi, and Mohd Shahbudin Masdar propose a fuel supply layer using a porous carbon plate (PCP) for DMFCs allowing for the use of high methanol concentrations. The proposed layer is comprised of a thin PCP layer, as well as a gap layer that has a mechanism to supply the methanol as a vapor. Next, Chapter Three by D.S. Falc�o, J. P. Pereira, and A.M.F.R. Pinto review the multiphase flow in fuel cells modelling approaches while also reviewing the flow visualisation techniques for flow analysis in fuel cells. Chapter Four by B.A. Braz, V.B. Oliveira, and A.M.F.R. Pinto closes the book by discussing the key work that has been done to improve the passive DMFC performance and providing a review on the most recent developments in passive DMFCs.

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology
Author: Christoph Hartnig,Christina Roth
Publsiher: Elsevier
Total Pages: 430
Release: 2012-03-19
ISBN: 0857095471
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Book Excerpt:

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and reviews advanced transport simulation approaches, degradation modelling and experimental monitoring techniques

Proceedings of the Workshop on Direct Methanol Air Fuel Cells

Proceedings of the Workshop on Direct Methanol Air Fuel Cells
Author: Electrochemical Society. Energy Technology Division,Electrochemical Society. Physical Electrochemistry Division
Publsiher: Unknown
Total Pages: 223
Release: 1992
ISBN: 1928374650XXX
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Proceedings of the Workshop on Direct Methanol Air Fuel Cells Book Excerpt:

Advances in Fuel Cells

Advances in Fuel Cells
Author: Anonim
Publsiher: Elsevier
Total Pages: 499
Release: 2007-04-23
ISBN: 9780080471006
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Advances in Fuel Cells Book Excerpt:

Fuel cells have been recognized to be destined to form the cornerstone of energy technologies in the twenty-first century. The rapid advances in fuel cell system development have left current information available only in scattered journals and Internet sites. Advances in Fuel Cells fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes. Includes contributions by leading experts working in both academic and industrial R&D Disseminates the latest research discoveries A valuable resource for senior undergraduates and graduate students, it provides in-depth coverage over a broad scope

Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications
Author: Anonim
Publsiher: Unknown
Total Pages: 38
Release: 2009
ISBN: 1928374650XXX
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications Book Excerpt:

This report is the final technical report for DOE Program DE-FC36-04GO14301 titled "Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications". Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

Direct Liquid Fuel Cells

Direct Liquid Fuel Cells
Author: Ramiz Gültekin Akay,Ayşe Bayrakçeken Yurtcan
Publsiher: Academic Press
Total Pages: 328
Release: 2020-09-10
ISBN: 0128187360
Category: Science
Language: EN, FR, DE, ES & NL

Direct Liquid Fuel Cells Book Excerpt:

Direct Liquid Fuel Cells is a comprehensive overview of the fundamentals and specificities of the use of methanol, ethanol, glycerol, formic acid and formate, dimethyl ether, borohydride, hydrazine and other promising liquid fuels in fuel cells. Each chapter covers a different liquid fuel-based fuel cell such as: Anode catalysts of direct methanol fuel cells (DMFCs), future system designs and future trends for direct ethanol fuel cells (DEFCs), development of catalysts for direct glycerol fuel cells (DGFCs), the mechanisms of the reactions taking place at the anode and cathode electrodes, and the reported anode catalysts for direct formic acid fuel cell (DFAFC) and direct formate fuel cell (DFFC), characteristics of direct dimethyl ether fuel cell (DDMEFC), including its electrochemical and operating systems and design, the developments in direct borohydride fuel cells, the development of catalysts for direct hydrazine fuel cells (DHFCs), and also the uncommonly used liquids that have a potential for fuel cell applications including 2-propanol, ethylene glycol, ascorbic acid and ascorbate studied in the literature as well as utilization of some blended fuels. In each part, the most recent literature is reviewed and the state of the art is presented. It also includes examples of practical problems with solutions and a summarized comparison of performance, advantages, and limitations of each type of fuel cell discussed. Direct Liquid Fuel Cells is not a typical textbook but rather designed as a reference book of which any level of students (undergraduate or graduate), instructors, field specialists, industry and general audience, who benefit from current and complete understanding of the many aspects involved in the development and operation of these types of fuel cells, could make use of any chapter when necessary. Presents information on different types of direct liquid fuel cells. Explores information under each section, for specific fuel-based fuel cells in more detail in terms of the materials used. Covers three main sections: direct alcohol, organic fuel-based and inorganic fuel-based fuel cells

Materials for Low Temperature Fuel Cells

Materials for Low Temperature Fuel Cells
Author: Bradley Ladewig,San Ping Jiang,Yushan Yan,Max Lu
Publsiher: John Wiley & Sons
Total Pages: 272
Release: 2015-03-09
ISBN: 3527330429
Category: Science
Language: EN, FR, DE, ES & NL

Materials for Low Temperature Fuel Cells Book Excerpt:

There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part of the "Materials for Sustainable Energy & Development" series. Key Materials in Low-Temperature Fuel Cells brings together world leaders and experts in this field and provides a lucid description of the materials assessment of fuel cell technologies. With an emphasis on the technical development and applications of key materials in low-temperature fuel cells, this text covers fundamental principles, advancement, challenges, and important current research themes. Topics covered include: proton exchange membrane fuel cells, direct methanol and ethanol fuel cells, microfluidic fuel cells, biofuel cells, alkaline membrane fuel cells, functionalized carbon nanotubes as catalyst supports, nanostructured Pt catalysts, non-PGM catalysts, membranes, and materials modeling. This book is an essential reference source for researchers, engineers and technicians in academia, research institutes and industry working in the fields of fuel cells, energy materials, electrochemistry and materials science and engineering.

High Energy Density Direct Methanol Fuel Cells

High Energy Density Direct Methanol Fuel Cells
Author: Hyea Kim
Publsiher: Unknown
Total Pages: 135
Release: 2010
ISBN: 1928374650XXX
Category: Fuel cells
Language: EN, FR, DE, ES & NL

High Energy Density Direct Methanol Fuel Cells Book Excerpt:

The goal of this dissertation was to create a new class of DMFC targeted at high energy density and low loss for small electronic devices. In order for the DMFC to efficiently use all its fuel, with a minimum of balance of plant, a low-loss proton exchange membrane was required. Moderate conductivity and ultra low methanol permeability were needed. Fuel loss is the dominant loss mechanism for low power systems. By replacing the polymer membrane with an inorganic glass membrane, the methanol permeability was reduced, leading to low fuel loss. In order to achieve steady state performance, a compliant, chemically stable electrode structure was investigated. An anode electrode structure to minimize the fuel loss was studied, so as to further increase the fuel cell efficiency. Inorganic proton conducting membranes and electrodes have been made through a sol-gel process. To achieve higher voltage and power, multiple fuel cells can be connected in series in a stack. For the limited volume allowed for the small electronic devices, a noble, compact DMFC stack was designed. Using an ADMFC with a traditional DMFC including PEM, twice higher voltage was achieved by sharing one methanol fuel tank. Since the current ADMFC technology is not as mature as the traditional DMFCs with PEM, the improvement was accomplished to achieve higher performance from ADMFC. The ultimate goal of this study was to develop a DMFC system with high energy density, high energy efficiency, longer-life and lower-cost for low power systems.

Proton Exchange Membrane Fuel Cell

Proton Exchange Membrane Fuel Cell
Author: Tolga Taner
Publsiher: BoD – Books on Demand
Total Pages: 212
Release: 2018-05-09
ISBN: 1789230667
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Proton Exchange Membrane Fuel Cell Book Excerpt:

The main idea of this study is to scrutinize the performance efficiency and enhancement of modelling and simulations of PEM fuel cell. Besides, the research of PEM fuel cell performance can figure out many critical issues for an alternative resource energy. The chapters collected in the book are contributions by invited researchers with a long-standing experience in different research areas. I hope that the material presented here is understandable to a wide audience, not only energy engineers but also scientists from various disciplines. The book contains nine chapters in three sections: (1) "General Information About PEM Fuel Cell", (2) "PEM Fuel Cell Technology" and (3) "Many Different Applications of PEM Fuel Cell". This book presents detailed and up-to-date evaluations in different areas and was written by academics with experience in their field. It is anticipated that this book will make a scientific contribution to PEM fuel cell and other alternative energy resource workers, researchers, academics, PhD students and other scientists both in the present and in the future.

Handbook of Fuel Cells

Handbook of Fuel Cells
Author: Wolf Vielstich,Arnold Lamm,Hubert A. Gasteiger
Publsiher: Wiley
Total Pages: 3826
Release: 2003-05-07
ISBN: 9780471499268
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Handbook of Fuel Cells Book Excerpt:

This four volume set brings together for the first time in a single reference work the fundamentals, principles and the current state-of-the-art in fuel cells. Its publication reflects the increasing importance of and the rapidly growing rate of research into alternative, clean sources of energy. With internationally renowned Editors, International Advisory Board members, and Contributors from academia and industry, it guides the reader from the foundations and fundamental principles through to the latest technology and cutting-edge applications, ensuring a logical, consistent approach to the subject. The Handbook is divided into three main themes, covered in four volumes: * Volume 1: "Fundamentals and Survey of Systems" * Volume 2: "Fuel Cell Electrocatalysis" * Volumes 3 and 4: "Fuel Cell Technology and Applications" Volume 1, "Fundamentals and Survey of Systems", provides the necessary background information on fuel cells, including the fundamental principles such as the thermodyamics and kinetics of fuel cell reactions, mass and heat transfer in fuel cells, and an overview of the key principles of the most important types of fuel cell, and their related systems and applications. Volume 2, "Fuel Cell Electrocatalysis", is concerned with the most important basic phenomenon of fuel cell electrodes, electrocatalysis. It includes an introduction to the topic, and a detailed account of the theory. A number of the key practical methods used to study this phenomenon are discussed, as are a number of the key surface reactions. Finally, a number of other related topics associated with energy conversion are discussed. Volumes 3 and 4, "Fuel Cell Technology and Applications" open with an overview of a range of sustainable energy supplies for fuel cell development. The key issue of fuel storage is considered in detail, before a detailed discussion of the most important types of fuel cells and their applications is presented. Among these, polymer electrolyte membrane fuel cell systems, alkaline fuel cell modules and systems, phosphoric acid fuel cells, direct methanol fuel cells, molten carbonate fuel cells and solid oxide fuel cells are covered in depth. The use of fuel cells in a range of systems is then considered, including portable systems, propulsion systems and electric utility systems. In addition to domestic and industrial systems, use of fuel cells in such novel environments as the space shuttle and submarines is addressed. Finally, Volume 4 closes with a discussion of the future prospects of fuel cell systems. Comprising approximately 170 articles by more than 200 contributors, "The Handbook of Fuel Cells: Fundamentals, Technology and Applications", will be an invaluable source of reference for all those working directly in this important and dynamic field, for electrochemists, and for scientists, engineers and policy-makers involved in the quest for clean and sustainable energy sources.

Micro Fuel Cells

Micro Fuel Cells
Author: Tim Zhao
Publsiher: Academic Press
Total Pages: 312
Release: 2009-07-07
ISBN: 9780080878874
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Micro Fuel Cells Book Excerpt:

Today's consumers of portable electronics consumers are demanding devices not only deliver more power but also work healthy for the environment. This fact alone has lead major corporations like Intel, BIC, Duracell and Microsoft to believe that Microfuel Cells could be the next-generation power source for electronic products. Compact and readable, Microfuels Principles and Applications, offers engineers and product designers a reference unsurpassed by any other in the market. The book starts with a clear and rigorous exposition of the fundamentals engineering principles governing energy conversion for small electronic devices, followed by self-contained chapters concerning applications. The authors provide original points of view on all types of commercially available micro fuel cells types, including micro proton exchange membrane fuel cells, micro direct methanol fuel cells, micro solid oxide fuel cells and micro bio-fuel cells. The book also contains a detailed introduction to the fabrication of the components and the assembly of the system, making it a valuable reference both in terms of its application to product design and understanding micro engineering principles. *An overview of the micro fuel cell systems and applications. *A detailed introduction to the fabrication of the components and the assembly of the system. *Original points of view on prospects of micro fuel cells.

ADVANCES IN DIRECT METHANOL FUEL CELL SCIENCE TECHNOLOGY AT LOS ALAMOS NATIONAL LABORATORY

ADVANCES IN DIRECT METHANOL FUEL CELL SCIENCE   TECHNOLOGY AT LOS ALAMOS NATIONAL LABORATORY
Author: Anonim
Publsiher: Unknown
Total Pages: 5
Release: 2000
ISBN: 1928374650XXX
Category: Electronic Book
Language: EN, FR, DE, ES & NL

ADVANCES IN DIRECT METHANOL FUEL CELL SCIENCE TECHNOLOGY AT LOS ALAMOS NATIONAL LABORATORY Book Excerpt: