Electrohydrodynamic Direct Writing For Flexible Electronic Manufacturing

Author by : Zhouping Yin
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 98
Total Download : 772
File Size : 47,9 Mb
pdf pdf

Description : This book provides an overview of essential research on and developments in the electrohydrodynamic (EHD) direct-writing technique and its applications. Firstly, it presents mechano- and helix electrospinning methods to achieve direct writing of straight/serpentine micro/nano fibers in high resolution. Secondly, it examines functional inks and multi nozzle arrays for EHD printing, which are used to efficientlyform patterns and devices. Thirdly, the book discusses the various control methods adopted in the context of EHD to improve the controllability of the electrospun fibers. Lastly, it addresses the equipment used in EHD printing and its applications, while also outlining challenges for the field’s future development. Combining academic and industrial viewpoints, the book provides in-depth information for experienced researchers, as well as a valuable guide for those just entering the field.


Electrospinning Nanofabrication And Applications

Author by : Bin Ding
Languange : en
Publisher by : William Andrew
Format Available : PDF, ePub, Mobi
Total Read : 34
Total Download : 288
File Size : 40,9 Mb
pdf pdf

Description : Electrospinning: Nanofabrication and Applications presents an overview of the electrospinning technique, nanofabrication strategies and potential applications. The book begins with an introduction to the fundamentals of electrospinning, discussing fundamental principles of the electrospinning process, controlling parameters, materials and structures. Nanofabrication strategies, including coaxial electrospinning, multi-needle electrospinning, needleless electrospinning, electro-netting, near-field electrospinning, and three-dimensional macrostructure assembling are also covered. Final sections explore the applications of electrospun nanofibers in different fields and future prospects. This is a valuable reference for engineers and materials scientist working with fibrous materials and textiles, as well as researchers in the areas of nanotechnology, electrospinning, nanofibers and textiles. Explores controllable fabrication of electrospun nanomaterials and their multifunctional applications Explains the electrospinning technique as used in nanofabrication and nanofibers Outlines the applications of electrospun nanofibrous materials in tissue engineering, filtration, oil-water separation, water treatment, food technology, supercapacitors, sensors and so on


Materials In Sports Equipment

Author by : Aleksandar Subic
Languange : en
Publisher by : Woodhead Publishing
Format Available : PDF, ePub, Mobi
Total Read : 31
Total Download : 469
File Size : 42,8 Mb
pdf pdf

Description : Materials in Sports Equipment, Second Edition, provides a detailed review on the design and performance of materials in sports apparel, equipment and surfaces in a broad range of sporting applications. Chapters cover materials modeling, non-destructive testing, design issues for sports apparel, skull and mouth protection, and new chapters on artificial sport surfaces, anthropometric design customization, and 3D printing in sports equipment. In addition, the book covers sports-specific design and material choices in a range of key sports, from baseball, rowing, and archery, to ice hockey, snowboarding, and fishing. Users will find a valuable resource that explicitly links materials, engineering and design principles directly to sports applications, thus making it an essential resource to materials scientists, engineers, sports equipment designers and sports manufacturers developing products in this evolving field. Provides both updated and new chapters on recent developments in the design and performance of advanced materials in a number of sports applications Discusses varying aspects, such as the modeling of materials behavior and non-destructive testing Analyzes the aerodynamic properties of materials and the design of sports apparel and smart materials Explores new topics on athletic equipment, such as 3D printing and anthropometric design customization and on artificial sports surfaces


Product Process Fingerprint In Micro Manufacturing

Author by : Guido Tosello
Languange : en
Publisher by : MDPI
Format Available : PDF, ePub, Mobi
Total Read : 33
Total Download : 649
File Size : 40,8 Mb
pdf pdf

Description : The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.


Modeling And Simulation Of Functionalized Materials For Additive Manufacturing And 3d Printing Continuous And Discrete Media

Author by : Tarek I. Zohdi
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 13
Total Download : 297
File Size : 43,5 Mb
pdf pdf

Description : Within the last decade, several industrialized countries have stressed the importance of advanced manufacturing to their economies. Many of these plans have highlighted the development of additive manufacturing techniques, such as 3D printing which, as of 2018, are still in their infancy. The objective is to develop superior products, produced at lower overall operational costs. For these goals to be realized, a deep understanding of the essential ingredients comprising the materials involved in additive manufacturing is needed. The combination of rigorous material modeling theories, coupled with the dramatic increase of computational power can potentially play a significant role in the analysis, control, and design of many emerging additive manufacturing processes. Specialized materials and the precise design of their properties are key factors in the processes. Specifically, particle-functionalized materials play a central role in this field, in three main regimes: (1) to enhance overall filament-based material properties, by embedding particles within a binder, which is then passed through a heating element and the deposited onto a surface, (2) to “functionalize” inks by adding particles to freely flowing solvents forming a mixture, which is then deposited onto a surface and (3) to directly deposit particles, as dry powders, onto surfaces and then to heat them with a laser, e-beam or other external source, in order to fuse them into place. The goal of these processes is primarily to build surface structures which are extremely difficult to construct using classical manufacturing methods. The objective of this monograph is introduce the readers to basic techniques which can allow them to rapidly develop and analyze particulate-based materials needed in such additive manufacturing processes. This monograph is broken into two main parts: “Continuum Method” (CM) approaches and “Discrete Element Method” (DEM) approaches. The materials associated with methods (1) and (2) are closely related types of continua (particles embedded in a continuous binder) and are treated using continuum approaches. The materials in method (3), which are of a discrete particulate character, are analyzed using discrete element methods.


Comprehensive Nanoscience And Technology

Author by :
Languange : en
Publisher by : Academic Press
Format Available : PDF, ePub, Mobi
Total Read : 85
Total Download : 931
File Size : 54,6 Mb
pdf pdf

Description : From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.


The Optical Industry Systems Purchasing Directory

Author by :
Languange : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 97
Total Download : 128
File Size : 46,8 Mb
pdf pdf

Description :


Issues In Applied Physics 2011 Edition

Author by :
Languange : en
Publisher by : ScholarlyEditions
Format Available : PDF, ePub, Mobi
Total Read : 35
Total Download : 689
File Size : 45,5 Mb
pdf pdf

Description : Issues in Applied Physics / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Applied Physics. The editors have built Issues in Applied Physics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Applied Physics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied Physics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.