Geometric Theory Of Foliations

Author by : César Camacho
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 53
Total Download : 782
File Size : 52,9 Mb
GET BOOK

Description : Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X· curl X • 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C"".


Geometry Dynamics And Topology Of Foliations A First Course

Author by : Bruno Scardua
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 37
Total Download : 685
File Size : 45,8 Mb
GET BOOK

Description : The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments.In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations.


Introduction To The Geometry Of Foliations Part A

Author by : Gilbert Hector
Languange : de
Publisher by : Vieweg+Teubner Verlag
Format Available : PDF, ePub, Mobi
Total Read : 68
Total Download : 910
File Size : 55,8 Mb
GET BOOK

Description : Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot"ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved.


Geometry Dynamics And Topology Of Foliations

Author by : Bruno Scárdua
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 91
Total Download : 267
File Size : 47,6 Mb
GET BOOK

Description : "The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments. In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations."--Publisher's website.


Extrinsic Geometry Of Foliations

Author by : Vladimir Rovenski
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 98
Total Download : 877
File Size : 49,9 Mb
GET BOOK

Description : This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.


Foliations Dynamics Geometry And Topology

Author by : Masayuki Asaoka
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 64
Total Download : 828
File Size : 48,6 Mb
GET BOOK

Description : This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods converging in the study of foliations. The lectures by Aziz El Kacimi Alaoui provide an introduction to Foliation Theory with emphasis on examples and transverse structures. Steven Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations: limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, Pesin Theory and hyperbolic, parabolic and elliptic types of foliations. The lectures by Masayuki Asaoka compute the leafwise cohomology of foliations given by actions of Lie groups, and apply it to describe deformation of those actions. In his lectures, Ken Richardson studies the properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will be interesting for mathematicians interested in the applications to foliations of subjects like Topology of Manifolds, Differential Geometry, Dynamics, Cohomology or Global Analysis.


Extrinsic Geometry Of Foliations

Author by : Vladimir Rovenski
Languange : en
Publisher by : Springer Nature
Format Available : PDF, ePub, Mobi
Total Read : 74
Total Download : 381
File Size : 43,7 Mb
GET BOOK

Description : This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.


Foliation Theory In Algebraic Geometry

Author by : Paolo Cascini
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 96
Total Download : 332
File Size : 47,8 Mb
GET BOOK

Description : Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions. Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study./div


Geometric Study Of Foliations Proceedings Of The International Symposium Workshop

Author by : Mizutani Tadayoshi
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 93
Total Download : 616
File Size : 42,5 Mb
GET BOOK

Description : This book covers recent topics in various aspects of foliation theory and its relation with other areas including dynamical systems, C∗-algebras, index theory and low-dimensional topology. It contains survey articles by G Hector, S Hurder and P Molino, as well as more than 20 original papers by specialists who are currently most active in the field.


Topics In Extrinsic Geometry Of Codimension One Foliations

Author by : Vladimir Rovenski
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 51
Total Download : 703
File Size : 45,9 Mb
GET BOOK

Description : Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.


Geometry Of Foliations

Author by : Philippe Tondeur
Languange : en
Publisher by : Birkhäuser
Format Available : PDF, ePub, Mobi
Total Read : 67
Total Download : 874
File Size : 41,9 Mb
GET BOOK

Description : The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.


Laminations And Foliations In Dynamics Geometry And Topology

Author by : Mikhail Lyubich
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 34
Total Download : 376
File Size : 47,5 Mb
GET BOOK

Description : This volume is based on a conference held at SUNY, Stony Brook (NY). The concepts of laminations and foliations appear in a diverse number of fields, such as topology, geometry, analytic differential equations, holomorphic dynamics, and renormalization theory. Although these areas have developed deep relations, each has developed distinct research fields with little interaction among practitioners. The conference brought together the diverse points of view of researchers from different areas. This book includes surveys and research papers reflecting the broad spectrum of themes presented at the event. Of particular interest are the articles by F. Bonahon, ``Geodesic Laminations on Surfaces'', and D. Gabai, ``Three Lectures on Foliations and Laminations on 3-manifolds'', which are based on minicourses that took place during the conference.


Foliations And Geometric Structures

Author by : Aurel Bejancu
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 35
Total Download : 416
File Size : 43,7 Mb
GET BOOK

Description : Offers basic material on distributions and foliations. This book introduces and builds the tools needed for studying the geometry of foliated manifolds. Its main theme is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand.


Topology Ergodic Theory Real Algebraic Geometry

Author by : Vladimir G. Turaev
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 59
Total Download : 238
File Size : 52,5 Mb
GET BOOK

Description : This volume is dedicated to the memory of the Russian mathematician, V.A. Rokhlin (1919-1984). It is a collection of research papers written by his former students and followers, who are now experts in their fields. The topics in this volume include topology (the Morse-Novikov theory, spin bordisms in dimension 6, and skein modules of links), real algebraic geometry (real algebraic curves, plane algebraic surfaces, algebraic links, and complex orientations), dynamics (ergodicity, amenability, and random bundle transformations), geometry of Riemannian manifolds, theory of Teichmuller spaces, measure theory, etc. The book also includes a biography of Rokhlin by Vershik and two articles which should prove of historical interest.


Introduction To The Geometry Of Foliations Part B

Author by : Gilbert Hector
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 95
Total Download : 243
File Size : 55,9 Mb
GET BOOK

Description : "The book ...is a storehouse of useful information for the mathematicians interested in foliation theory." (John Cantwell, Mathematical Reviews 1992)


Foliations In Cauchy Riemann Geometry

Author by : Elisabetta Barletta
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 22
Total Download : 996
File Size : 46,9 Mb
GET BOOK

Description : The authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of


Introduction To The Geometry Of Foliations Part A

Author by : Gilbert Hector
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 47
Total Download : 685
File Size : 51,7 Mb
GET BOOK

Description : Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved


Dynamics Of Foliations Groups And Pseudogroups

Author by : Pawel Walczak
Languange : en
Publisher by : Birkhäuser
Format Available : PDF, ePub, Mobi
Total Read : 26
Total Download : 561
File Size : 54,5 Mb
GET BOOK

Description : This book deals with the dynamics of general systems such as foliations, groups and pseudogroups, systems which are closely related via the notion of holonomy. It concentrates on notions and results related to different ways of measuring complexity of systems under consideration. More precisely, it deals with different types of growth, entropies and dimensions of limiting objects. Problems related to the topics covered are provided throughout the book.


Complex Algebraic Foliations

Author by : Alcides Lins Neto
Languange : en
Publisher by : Walter de Gruyter GmbH & Co KG
Format Available : PDF, ePub, Mobi
Total Read : 77
Total Download : 667
File Size : 47,6 Mb
GET BOOK

Description : This book is a basic reference in the modern theory of holomorphic foliations, presenting the interplay between various aspects of the theory and utilizing methods from algebraic and complex geometry along with techniques from complex dynamics and several complex variables. The result is a solid introduction to the theory of foliations, covering basic concepts through modern results on the structure of foliations on complex projective spaces.


Geometric Theory Of Discrete Nonautonomous Dynamical Systems

Author by : Christian Pötzsche
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 89
Total Download : 831
File Size : 55,6 Mb
GET BOOK

Description : The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).


Holomorphic Foliations With Singularities

Author by : Bruno Scárdua
Languange : en
Publisher by : Springer Nature
Format Available : PDF, ePub, Mobi
Total Read : 52
Total Download : 670
File Size : 42,6 Mb
GET BOOK

Description : This concise textbook gathers together key concepts and modern results on the theory of holomorphic foliations with singularities, offering a compelling vision on how the notion of foliation, usually linked to real functions and manifolds, can have an important role in the holomorphic world, as shown by modern results from mathematicians as H. Cartan, K. Oka, T. Nishino, and M. Suzuki. The text starts with a gentle presentation of the classical notion of foliations, advancing to holomorphic foliations and then holomorphic foliations with singularities. The theory behind reduction of singularities is described in detail, as well the cases for dynamics of a local diffeomorphism and foliations on complex projective spaces. A final chapter brings recent questions in the field, as holomorphic flows on Stein spaces and transversely homogeneous holomorphic foliations, along with a list of open questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory. Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Singularity Theory courses, and as a resource for independent study on this vibrant field of research.


An Invitation To Noncommutative Geometry

Author by : Masoud Khalkhali
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 22
Total Download : 965
File Size : 51,7 Mb
GET BOOK

Description : A walk in the noncommutative garden / A. Connes and M. Marcolli -- Renormalization of noncommutative quantum field theory / H. Grosse and R. Wulkenhaar -- Lectures on noncommutative geometry / M. Khalkhali -- Noncommutative bundles and instantons in Tehran / G. Landi and W. D. van Suijlekom -- Lecture notes on noncommutative algebraic geometry and noncommutative tori / S. Mahanta -- Lectures on derived and triangulated categories / B. Noohi -- Examples of noncommutative manifolds: complex tori and spherical manifolds / J. Plazas -- D-branes in noncommutative field theory / R. J. Szabo


Foliations Geometry And Topology

Author by : Paul A. Schweitzer
Languange : en
Publisher by : American Mathematical Soc.
Format Available : PDF, ePub, Mobi
Total Read : 37
Total Download : 938
File Size : 44,8 Mb
GET BOOK

Description : This volume represents the proceedings of the conference on Foliations, Geometry, and Topology, held August 6-10, 2007, in Rio de Janeiro, Brazil, in honor of the 70th birthday of Paul Schweitzer. The papers concentrate on the theory of foliations and related areas such as dynamical systems, group actions on low dimensional manifolds, and geometry of hypersurfaces. There are survey papers on classification of foliations and their dynamical properties, including codimension one foliations with Bott - Morse singularities. Other papers involve the relationship of foliations with characteristic classes, contact structures, and Eliashberg - Mishachev wrinkled mappings.


Foliations

Author by : Alberto Candel
Languange : en
Publisher by : Unknown
Format Available : PDF, ePub, Mobi
Total Read : 98
Total Download : 521
File Size : 42,8 Mb
GET BOOK

Description : This is the first of two volumes on the qualitative theory of foliations. This volume is divided into three parts. It is extensively illustrated throughout and provides a large number of examples. Part 1 is intended as a "primer" in foliation theory. A working knowledge of manifold theory and topology is a prerequisite. Fundamental definitions and theorems are explained to prepare the reader for further exploration of the topic. This section places considerable emphasis on the construction of examples, which are accompanied by many illustrations. Part 2 considers foliations of codimension one. Using very hands-on geometric methods, the path leads to a complete structure theory (the theory of levels), which was established by Conlon along with Cantwell, Hector, Duminy, Nishimori, Tsuchiya, et al. Presented here is the first and only full treatment of the theory of levels in a textbook. Part 3 is devoted to foliations of higher codimension, including abstract laminations (foliated spaces). The treatment emphasizes the methods of ergodic theory: holonomy-invariant measures and entropy. Featured are Sullivan's theory of foliation cycles, Plante's theory of growth of leaves, and the Ghys, Langevin, Walczak theory of geometric entropy. This comprehensive volume has something to offer a broad spectrum of readers: from beginners to advanced students to professional researchers. Packed with a wealth of illustrations and copious examples at varying degrees of difficulty, this highly-accessible text offers the first full treatment in the literature of the theory of levels for foliated manifolds of codimension one. It would make an elegant supplementary text for a topics course at the advanced graduate level. Foliations II is Volume 60 in the AMS in the Graduate Studies in Mathematics series.


Handbook Of Differential Geometry

Author by : Franki J.E. Dillen
Languange : en
Publisher by : Elsevier
Format Available : PDF, ePub, Mobi
Total Read : 32
Total Download : 570
File Size : 49,9 Mb
GET BOOK

Description : In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas. . Written by experts and covering recent research . Extensive bibliography . Dealing with a diverse range of areas . Starting from the basics


Foliations On Riemannian Manifolds

Author by : Philippe Tondeur
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 80
Total Download : 368
File Size : 45,8 Mb
GET BOOK

Description : A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.


Foliations 2012 Proceedings Of The International Conference

Author by : Jesus A Alvarez Lopez
Languange : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 60
Total Download : 748
File Size : 47,8 Mb
GET BOOK

Description : This volume is a compilation of new results and surveys on the current state of some aspects of the foliation theory presented during the conference “FOLIATIONS 2012”. It contains recent materials on foliation theory which is related to differential geometry, the theory of dynamical systems and differential topology. Both the original research and survey articles found in here should inspire students and researchers interested in foliation theory and the related fields to plan his/her further research.


Introduction To Foliations And Lie Groupoids

Author by : I. Moerdijk
Languange : en
Publisher by : Cambridge University Press
Format Available : PDF, ePub, Mobi
Total Read : 93
Total Download : 679
File Size : 55,5 Mb
GET BOOK

Description : This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.