Java Data Analysis

Java Data Analysis
Author: John R. Hubbard
Publsiher: Packt Publishing
Total Pages: 412
Release: 2017-09-15
ISBN: 9781787285651
Category: Computers
Language: EN, FR, DE, ES & NL

Java Data Analysis Book Excerpt:

Get the most out of the popular Java libraries and tools to perform efficient data analysisAbout This Book* Get your basics right for data analysis with Java and make sense of your data through effective visualizations.* Use various Java APIs and tools such as Rapidminer and WEKA for effective data analysis and machine learning.* This is your companion to understanding and implementing a solid data analysis solution using JavaWho This Book Is ForIf you are a student or Java developer or a budding data scientist who wishes to learn the fundamentals of data analysis and learn to perform data analysis with Java, this book is for you. Some familiarity with elementary statistics and relational databases will be helpful but is not mandatory, to get the most out of this book. A firm understanding of Java is required.What You Will Learn* Develop Java programs that analyze data sets of nearly any size, including text* Implement important machine learning algorithms such as regression, classification, and clustering* Interface with and apply standard open source Java libraries and APIs to analyze and visualize data* Process data from both relational and non-relational databases and from time-series data* Employ Java tools to visualize data in various forms* Understand multimedia data analysis algorithms and implement them in Java.In DetailData analysis is a process of inspecting, cleansing, transforming, and modeling data with the aim of discovering useful information. Java is one of the most popular languages to perform your data analysis tasks.This book will help you learn the tools and techniques in Java to conduct data analysis without any hassle. After getting a quick overview of what data science is and the steps involved in the process, you'll learn the statistical data analysis techniques and implement them using the popular Java APIs and libraries. Through practical examples, you will also learn the machine learning concepts such as classification and regression.In the process, you'll familiarize yourself with tools such as Rapidminer and WEKA and see how these Java-based tools can be used effectively for analysis. You will also learn how to analyze text and other types of multimedia. Learn to work with relational, NoSQL, and time-series data. This book will also show you how you can utilize different Java-based libraries to create insightful and easy to understand plots and graphs.By the end of this book, you will have a solid understanding of the various data analysis techniques, and how to implement them using Java.Style and approachThe book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy-to-follow examples, this book will turn you into an ace data analyst in no time.

Java Data Analysis

Java Data Analysis
Author: John R. Hubbard
Publsiher: Packt Publishing Ltd
Total Pages: 412
Release: 2017-09-19
ISBN: 1787286401
Category: Computers
Language: EN, FR, DE, ES & NL

Java Data Analysis Book Excerpt:

Get the most out of the popular Java libraries and tools to perform efficient data analysis About This Book Get your basics right for data analysis with Java and make sense of your data through effective visualizations. Use various Java APIs and tools such as Rapidminer and WEKA for effective data analysis and machine learning. This is your companion to understanding and implementing a solid data analysis solution using Java Who This Book Is For If you are a student or Java developer or a budding data scientist who wishes to learn the fundamentals of data analysis and learn to perform data analysis with Java, this book is for you. Some familiarity with elementary statistics and relational databases will be helpful but is not mandatory, to get the most out of this book. A firm understanding of Java is required. What You Will Learn Develop Java programs that analyze data sets of nearly any size, including text Implement important machine learning algorithms such as regression, classification, and clustering Interface with and apply standard open source Java libraries and APIs to analyze and visualize data Process data from both relational and non-relational databases and from time-series data Employ Java tools to visualize data in various forms Understand multimedia data analysis algorithms and implement them in Java. In Detail Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the aim of discovering useful information. Java is one of the most popular languages to perform your data analysis tasks. This book will help you learn the tools and techniques in Java to conduct data analysis without any hassle. After getting a quick overview of what data science is and the steps involved in the process, you'll learn the statistical data analysis techniques and implement them using the popular Java APIs and libraries. Through practical examples, you will also learn the machine learning concepts such as classification and regression. In the process, you'll familiarize yourself with tools such as Rapidminer and WEKA and see how these Java-based tools can be used effectively for analysis. You will also learn how to analyze text and other types of multimedia. Learn to work with relational, NoSQL, and time-series data. This book will also show you how you can utilize different Java-based libraries to create insightful and easy to understand plots and graphs. By the end of this book, you will have a solid understanding of the various data analysis techniques, and how to implement them using Java. Style and approach The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy-to-follow examples, this book will turn you into an ace data analyst in no time.

Java Data Mining Strategy Standard and Practice

Java Data Mining  Strategy  Standard  and Practice
Author: Mark F. Hornick,Erik Marcadé,Sunil Venkayala
Publsiher: Elsevier
Total Pages: 544
Release: 2010-07-26
ISBN: 9780080495910
Category: Computers
Language: EN, FR, DE, ES & NL

Java Data Mining Strategy Standard and Practice Book Excerpt:

Whether you are a software developer, systems architect, data analyst, or business analyst, if you want to take advantage of data mining in the development of advanced analytic applications, Java Data Mining, JDM, the new standard now implemented in core DBMS and data mining/analysis software, is a key solution component. This book is the essential guide to the usage of the JDM standard interface, written by contributors to the JDM standard. Data mining introduction - an overview of data mining and the problems it can address across industries; JDM's place in strategic solutions to data mining-related problems JDM essentials - concepts, design approach and design issues, with detailed code examples in Java; a Web Services interface to enable JDM functionality in an SOA environment; and illustration of JDM XML Schema for JDM objects JDM in practice - the use of JDM from vendor implementations and approaches to customer applications, integration, and usage; impact of data mining on IT infrastructure; a how-to guide for building applications that use the JDM API Free, downloadable KJDM source code referenced in the book available here

Correspondence Analysis and Data Coding with Java and R

Correspondence Analysis and Data Coding with Java and R
Author: Fionn Murtagh
Publsiher: CRC Press
Total Pages: 256
Release: 2005-05-26
ISBN: 1420034944
Category: Mathematics
Language: EN, FR, DE, ES & NL

Correspondence Analysis and Data Coding with Java and R Book Excerpt:

Developed by Jean-Paul Benzerci more than 30 years ago, correspondence analysis as a framework for analyzing data quickly found widespread popularity in Europe. The topicality and importance of correspondence analysis continue, and with the tremendous computing power now available and new fields of application emerging, its significance is greater

Big Data Analytics with Java

Big Data Analytics with Java
Author: Rajat Mehta
Publsiher: Packt Publishing Ltd
Total Pages: 418
Release: 2017-07-31
ISBN: 1787282198
Category: Computers
Language: EN, FR, DE, ES & NL

Big Data Analytics with Java Book Excerpt:

Learn the basics of analytics on big data using Java, machine learning and other big data tools About This Book Acquire real-world set of tools for building enterprise level data science applications Surpasses the barrier of other languages in data science and learn create useful object-oriented codes Extensive use of Java compliant big data tools like apache spark, Hadoop, etc. Who This Book Is For This book is for Java developers who are looking to perform data analysis in production environment. Those who wish to implement data analysis in their Big data applications will find this book helpful. What You Will Learn Start from simple analytic tasks on big data Get into more complex tasks with predictive analytics on big data using machine learning Learn real time analytic tasks Understand the concepts with examples and case studies Prepare and refine data for analysis Create charts in order to understand the data See various real-world datasets In Detail This book covers case studies such as sentiment analysis on a tweet dataset, recommendations on a movielens dataset, customer segmentation on an ecommerce dataset, and graph analysis on actual flights dataset. This book is an end-to-end guide to implement analytics on big data with Java. Java is the de facto language for major big data environments, including Hadoop. This book will teach you how to perform analytics on big data with production-friendly Java. This book basically divided into two sections. The first part is an introduction that will help the readers get acquainted with big data environments, whereas the second part will contain a hardcore discussion on all the concepts in analytics on big data. It will take you from data analysis and data visualization to the core concepts and advantages of machine learning, real-life usage of regression and classification using Naive Bayes, a deep discussion on the concepts of clustering,and a review of simple neural networks on big data using deepLearning4j or plain Java Spark code. This book is a must-have book for Java developers who want to start learning big data analytics and want to use it in the real world. Style and approach The approach of book is to deliver practical learning modules in manageable content. Each chapter is a self-contained unit of a concept in big data analytics. Book will step by step builds the competency in the area of big data analytics. Examples using real world case studies to give ideas of real applications and how to use the techniques mentioned. The examples and case studies will be shown using both theory and code.

R Data Analysis Cookbook

R Data Analysis Cookbook
Author: Kuntal Ganguly
Publsiher: Packt Publishing Ltd
Total Pages: 560
Release: 2017-09-20
ISBN: 1787125319
Category: Computers
Language: EN, FR, DE, ES & NL

R Data Analysis Cookbook Book Excerpt:

Over 80 recipes to help you breeze through your data analysis projects using R About This Book Analyse your data using the popular R packages like ggplot2 with ready-to-use and customizable recipes Find meaningful insights from your data and generate dynamic reports A practical guide to help you put your data analysis skills in R to practical use Who This Book Is For This book is for data scientists, analysts and even enthusiasts who want to learn and implement the various data analysis techniques using R in a practical way. Those looking for quick, handy solutions to common tasks and challenges in data analysis will find this book to be very useful. Basic knowledge of statistics and R programming is assumed. What You Will Learn Acquire, format and visualize your data using R Using R to perform an Exploratory data analysis Introduction to machine learning algorithms such as classification and regression Get started with social network analysis Generate dynamic reporting with Shiny Get started with geospatial analysis Handling large data with R using Spark and MongoDB Build Recommendation system- Collaborative Filtering, Content based and Hybrid Learn real world dataset examples- Fraud Detection and Image Recognition In Detail Data analytics with R has emerged as a very important focus for organizations of all kinds. R enables even those with only an intuitive grasp of the underlying concepts, without a deep mathematical background, to unleash powerful and detailed examinations of their data. This book will show you how you can put your data analysis skills in R to practical use, with recipes catering to the basic as well as advanced data analysis tasks. Right from acquiring your data and preparing it for analysis to the more complex data analysis techniques, the book will show you how you can implement each technique in the best possible manner. You will also visualize your data using the popular R packages like ggplot2 and gain hidden insights from it. Starting with implementing the basic data analysis concepts like handling your data to creating basic plots, you will master the more advanced data analysis techniques like performing cluster analysis, and generating effective analysis reports and visualizations. Throughout the book, you will get to know the common problems and obstacles you might encounter while implementing each of the data analysis techniques in R, with ways to overcoming them in the easiest possible way. By the end of this book, you will have all the knowledge you need to become an expert in data analysis with R, and put your skills to test in real-world scenarios. Style and Approach Hands-on recipes to walk through data science challenges using R Your one-stop solution for common and not-so-common pain points while performing real-world problems to execute a series of tasks. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf

Hands On Data Analysis with Scala

Hands On Data Analysis with Scala
Author: Rajesh Gupta
Publsiher: Packt Publishing Ltd
Total Pages: 298
Release: 2019-05-03
ISBN: 1789344263
Category: Computers
Language: EN, FR, DE, ES & NL

Hands On Data Analysis with Scala Book Excerpt:

Master scala's advanced techniques to solve real-world problems in data analysis and gain valuable insights from your data Key FeaturesA beginner's guide for performing data analysis loaded with numerous rich, practical examplesAccess to popular Scala libraries such as Breeze, Saddle for efficient data manipulation and exploratory analysisDevelop applications in Scala for real-time analysis and machine learning in Apache SparkBook Description Efficient business decisions with an accurate sense of business data helps in delivering better performance across products and services. This book helps you to leverage the popular Scala libraries and tools for performing core data analysis tasks with ease. The book begins with a quick overview of the building blocks of a standard data analysis process. You will learn to perform basic tasks like Extraction, Staging, Validation, Cleaning, and Shaping of datasets. You will later deep dive into the data exploration and visualization areas of the data analysis life cycle. You will make use of popular Scala libraries like Saddle, Breeze, Vegas, and PredictionIO for processing your datasets. You will learn statistical methods for deriving meaningful insights from data. You will also learn to create applications for Apache Spark 2.x on complex data analysis, in real-time. You will discover traditional machine learning techniques for doing data analysis. Furthermore, you will also be introduced to neural networks and deep learning from a data analysis standpoint. By the end of this book, you will be capable of handling large sets of structured and unstructured data, perform exploratory analysis, and building efficient Scala applications for discovering and delivering insights What you will learnTechniques to determine the validity and confidence level of dataApply quartiles and n-tiles to datasets to see how data is distributed into many bucketsCreate data pipelines that combine multiple data lifecycle stepsUse built-in features to gain a deeper understanding of the dataApply Lasso regression analysis method to your dataCompare Apache Spark API with traditional Apache Spark data analysisWho this book is for If you are a data scientist or a data analyst who wants to learn how to perform data analysis using Scala, this book is for you. All you need is knowledge of the basic fundamentals of Scala programming.

Big Data Data Mining and Machine Learning

Big Data  Data Mining  and Machine Learning
Author: Jared Dean
Publsiher: John Wiley & Sons
Total Pages: 288
Release: 2014-05-27
ISBN: 1118618041
Category: Computers
Language: EN, FR, DE, ES & NL

Big Data Data Mining and Machine Learning Book Excerpt:

With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.

Data Analysis

Data Analysis
Author: Siegmund Brandt
Publsiher: Springer Science & Business Media
Total Pages: 523
Release: 2014-02-14
ISBN: 3319037625
Category: Science
Language: EN, FR, DE, ES & NL

Data Analysis Book Excerpt:

The fourth edition of this successful textbook presents a comprehensive introduction to statistical and numerical methods for the evaluation of empirical and experimental data. Equal weight is given to statistical theory and practical problems. The concise mathematical treatment of the subject matter is illustrated by many examples and for the present edition a library of Java programs has been developed. It comprises methods of numerical data analysis and graphical representation as well as many example programs and solutions to programming problems. The book is conceived both as an introduction and as a work of reference. In particular it addresses itself to students, scientists and practitioners in science and engineering as a help in the analysis of their data in laboratory courses, in working for bachelor or master degrees, in thesis work, and in research and professional work.

Data Analysis with Open Source Tools

Data Analysis with Open Source Tools
Author: Philipp K. Janert
Publsiher: "O'Reilly Media, Inc."
Total Pages: 540
Release: 2010-11-11
ISBN: 9781449396657
Category: Computers
Language: EN, FR, DE, ES & NL

Data Analysis with Open Source Tools Book Excerpt:

Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora

MYSQL FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI

MYSQL FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI
Author: Vivian Siahaan,Rismon Hasiholan Sianipar
Publsiher: BALIGE PUBLISHING
Total Pages: 335
Release: 2022-06-26
ISBN: 1928374650XXX
Category: Computers
Language: EN, FR, DE, ES & NL

MYSQL FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI Book Excerpt:

In this project, you will use the Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over june 1997, amount feature over 1998, and all amount feature.

SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI

SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI
Author: Vivian Siahaan,Rismon Hasiholan Sianipar
Publsiher: BALIGE PUBLISHING
Total Pages: 412
Release: 2022-06-27
ISBN: 1928374650XXX
Category: Computers
Language: EN, FR, DE, ES & NL

SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI Book Excerpt:

In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the SQLite database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature.

METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON

METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON
Author: Vivian Siahaan,Rismon Hasiholan Sianipar
Publsiher: BALIGE PUBLISHING
Total Pages: 155
Release: 2022-02-15
ISBN: 1928374650XXX
Category: Computers
Language: EN, FR, DE, ES & NL

METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Book Excerpt:

Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Mobile Networks for Biometric Data Analysis

Mobile Networks for Biometric Data Analysis
Author: Massimo Conti,Natividad Martínez Madrid,Ralf Seepold,Simone Orcioni
Publsiher: Springer
Total Pages: 323
Release: 2016-07-27
ISBN: 3319397001
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Mobile Networks for Biometric Data Analysis Book Excerpt:

This book showcases new and innovative approaches to biometric data capture and analysis, focusing especially on those that are characterized by non-intrusiveness, reliable prediction algorithms, and high user acceptance. It comprises the peer-reviewed papers from the international workshop on the subject that was held in Ancona, Italy, in October 2014 and featured sessions on ICT for health care, biometric data in automotive and home applications, embedded systems for biometric data analysis, biometric data analysis: EMG and ECG, and ICT for gait analysis. The background to the book is the challenge posed by the prevention and treatment of common, widespread chronic diseases in modern, aging societies. Capture of biometric data is a cornerstone for any analysis and treatment strategy. The latest advances in sensor technology allow accurate data measurement in a non-intrusive way, and in many cases it is necessary to provide online monitoring and real-time data capturing to support a patient’s prevention plans or to allow medical professionals to access the patient’s current status. This book will be of value to all with an interest in this expanding field.

Scientific Data Analysis using Jython Scripting and Java

Scientific Data Analysis using Jython Scripting and Java
Author: Sergei V. Chekanov
Publsiher: Springer Science & Business Media
Total Pages: 440
Release: 2010-08-05
ISBN: 1849962871
Category: Computers
Language: EN, FR, DE, ES & NL

Scientific Data Analysis using Jython Scripting and Java Book Excerpt:

Scientific Data Analysis using Jython Scripting and Java presents practical approaches for data analysis using Java scripting based on Jython, a Java implementation of the Python language. The chapters essentially cover all aspects of data analysis, from arrays and histograms to clustering analysis, curve fitting, metadata and neural networks. A comprehensive coverage of data visualisation tools implemented in Java is also included. Written by the primary developer of the jHepWork data-analysis framework, the book provides a reliable and complete reference source laying the foundation for data-analysis applications using Java scripting. More than 250 code snippets (of around 10-20 lines each) written in Jython and Java, plus several real-life examples help the reader develop a genuine feeling for data analysis techniques and their programming implementation. This is the first data-analysis and data-mining book which is completely based on the Jython language, and opens doors to scripting using a fully multi-platform and multi-threaded approach. Graduate students and researchers will benefit from the information presented in this book.

Basic Data Analysis with Java

Basic Data Analysis with Java
Author: Erik Costlow
Publsiher: Unknown
Total Pages: 135
Release: 2017
ISBN: 9781788392631
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Basic Data Analysis with Java Book Excerpt:

"Data analysis is a process for inspecting, consolidating, transforming, and making sense of data in a way that guides the decision-making process. Effective data analysis is about transferring data through three main states: data, information, and knowledge. This matters because people become overwhelmed by large amounts of data, and make much better decisions on information at hand. Data analysis helps convert data into information, whether the consumer of this information is a person or machine-learning algorithm. This video course starts by showing you the various techniques of pre-processing your data. You will then get well-versed with the basics of data analysis with Java, how data changes state, and how Java fits into the analysis. You will then learn to apply the basic analysis to your business needs and create time-series predictions. Finally, you will see how to implement statistical data analysis techniques using Java APIs. You will also use JDBC to connect Java to SQL and MySQL databases. At the end of the video course, you will also see how to work with NoSQL databases."--Resource description page.

Python Data Analysis

Python Data Analysis
Author: Armando Fandango
Publsiher: Packt Publishing Ltd
Total Pages: 330
Release: 2017-03-27
ISBN: 1787127923
Category: Computers
Language: EN, FR, DE, ES & NL

Python Data Analysis Book Excerpt:

Learn how to apply powerful data analysis techniques with popular open source Python modules About This Book Find, manipulate, and analyze your data using the Python 3.5 libraries Perform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python code An easy-to-follow guide with realistic examples that are frequently used in real-world data analysis projects. Who This Book Is For This book is for programmers, scientists, and engineers who have the knowledge of Python and know the basics of data science. It is for those who wish to learn different data analysis methods using Python 3.5 and its libraries. This book contains all the basic ingredients you need to become an expert data analyst. What You Will Learn Install open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platforms Prepare and clean your data, and use it for exploratory analysis Manipulate your data with Pandas Retrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and HDF5 Visualize your data with open source libraries such as matplotlib, bokeh, and plotly Learn about various machine learning methods such as supervised, unsupervised, probabilistic, and Bayesian Understand signal processing and time series data analysis Get to grips with graph processing and social network analysis In Detail Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries. Style and approach The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy to follow examples, this book will turn you into an ace data analyst in no time.

Concept Data Analysis

Concept Data Analysis
Author: Claudio Carpineto,Giovanni Romano
Publsiher: John Wiley & Sons
Total Pages: 220
Release: 2004-10-22
ISBN: 0470011289
Category: Computers
Language: EN, FR, DE, ES & NL

Concept Data Analysis Book Excerpt:

With the advent of the Web along with the unprecedented amount of information available in electronic format, conceptual data analysis is more useful and practical than ever, because this technology addresses important limitations of the systems that currently support users in their quest for information. Concept Data Analysis: Theory & Applications is the first book that provides a comprehensive treatment of the full range of algorithms available for conceptual data analysis, spanning creation, maintenance, display and manipulation of concept lattices. The accompanying website allows you to gain a greater understanding of the principles covered in the book through actively working on the topics discussed. The three main areas explored are interactive mining of documents or collections of documents (including Web documents), automatic text ranking, and rule mining from structured data. The potentials of conceptual data analysis in the application areas being considered are further illustrated by two detailed case studies. Concept Data Analysis: Theory & Applications is essential for researchers active in information processing and management and industry practitioners who are interested in creating a commercial product for conceptual data analysis or developing content management applications.

Big Data Analytics Systems Algorithms Applications

Big Data Analytics  Systems  Algorithms  Applications
Author: C.S.R. Prabhu,Aneesh Sreevallabh Chivukula,Aditya Mogadala,Rohit Ghosh,L.M. Jenila Livingston
Publsiher: Springer Nature
Total Pages: 412
Release: 2019-10-14
ISBN: 9811500940
Category: Computers
Language: EN, FR, DE, ES & NL

Big Data Analytics Systems Algorithms Applications Book Excerpt:

This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.

Numeric Computation and Statistical Data Analysis on the Java Platform

Numeric Computation and Statistical Data Analysis on the Java Platform
Author: Sergei V. Chekanov
Publsiher: Springer
Total Pages: 620
Release: 2016-03-23
ISBN: 3319285319
Category: Computers
Language: EN, FR, DE, ES & NL

Numeric Computation and Statistical Data Analysis on the Java Platform Book Excerpt:

Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis on the Java Platform is a great choice for those who want to learn how statistical data analysis can be done using popular programming languages, who want to integrate data analysis algorithms in full-scale applications, and deploy such calculations on the web pages or computational servers regardless of their operating system. It is an excellent reference for scientific computations to solve real-world problems using a comprehensive stack of open-source Java libraries included in the DataMelt (DMelt) project and will be appreciated by many data-analysis scientists, engineers and students.