Organic Ferroelectric Materials and Applications

Organic Ferroelectric Materials and Applications
Author: Kamal Asadi
Publsiher: Woodhead Publishing
Total Pages: 648
Release: 2021-10-29
ISBN: 0128215526
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Organic Ferroelectric Materials and Applications Book Excerpt:

Organic Ferroelectric Materials and Applications aims to bring an up-to date account of the field with discussion of recent findings. This book presents an interdisciplinary resource for scientists from both academia and industry on the science and applications of molecular organic piezo- and ferroelectric materials. The book addresses the fundamental science of ferroelectric polymers, molecular crystals, supramolecular networks, and other key and emerging organic materials systems. It touches on important processing and characterization methods and provides an overview of current and emerging applications of organic piezoelectrics and ferroelectrics for electronics, sensors, energy harvesting, and biomedical technologies. Organic Ferroelectric Materials and Applications will be of special interest to those in academia or industry working in materials science, engineering, chemistry, and physics. Provides an overview of key physical properties of the emerging piezoelectric and ferroelectric molecular and supramolecular systems Discusses best practices of processing, patterning, and characterization methods and techniques Addresses current and emerging applications for electronics, materials development, sensors, energy harvesting, and biomedical technologies

Ferroelectric Materials and Their Applications

Ferroelectric Materials and Their Applications
Author: Y. Xu
Publsiher: Elsevier
Total Pages: 406
Release: 2013-10-22
ISBN: 1483290956
Category: Science
Language: EN, FR, DE, ES & NL

Ferroelectric Materials and Their Applications Book Excerpt:

This book presents the basic physical properties, structure, fabrication methods and applications of ferroelectric materials. These are widely used in various devices, such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage, display devices, etc. The ferroelectric materials described in this book include a relatively complete list of practical and promising ferroelectric single crystals, bulk ceramics and thin films. Included are perovskite-type, lithium niobate, tungsten-bronze-type, water-soluable crystals and other inorganic materials, as well as organic ferroelectrics (polymers, liquid crystals, and composites). Basic concepts, principles and methods for the physical property characteristics of ferroelectric materials are introduced in the first two chapters for those readers new to the subject of ferroelectricity. Not only professional researchers and engineers but also students and other readers who have limited physical knowledge and an interest in ferroelectrics, will welcome this book.

Multifunctional Supramolecular Organic Ferroelectrics

Multifunctional Supramolecular Organic Ferroelectrics
Author: Indre Urbanaviciute
Publsiher: Linköping University Electronic Press
Total Pages: 102
Release: 2019-10-24
ISBN: 9179299733
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Multifunctional Supramolecular Organic Ferroelectrics Book Excerpt:

Ferroelectric materials are known and valued for their multifunctionality arising from the possibility to perturb the remnant ferroelectric polarization by electric field, temperature and/or mechanical stimuli. While inorganic ferroelectrics dominate the current market, their organic counterparts may provide highly desired properties like eco-friendliness, easy processability and flexibility, concomitantly opening unique opportunities to combine multiple functionalities into a single compound that facilitates unprecedented device concepts and designs. Supramolecular organic ferroelectrics of columnar discotic type, that are the topic of this thesis, offer additional advantages related to their strong hierarchical self-assembly and easy tunability by molecular structure modifications, allowing optimization of ferroelectric characteristics and their hybridization with, e.g., semiconductivity. This not only leads to textbook ferroelectric materials that can be used as model systems to understand the general behaviour of ferroics, but also gives rise to previously unobserved effects stemming from the interplay of different functionalities. The core-shell structure of the molecules under the scope enables multiple pathways forrational design by molecular structure modification. This was firstly pursued via peripheral tail engineering on an archetypal self-assembling ferroelectric trialkylbenzene-1,3,5-tricarboxamide (BTA). We found that by shortening the alkyl chain length all the ferroelectric properties can be continuously tuned. In particular, changing the tail from C18H37 to C6H13causes an increase in depolarization activation energy (~0.8 eV to ~1.55 eV), coercive field(~25 V/?m to ~50 V/?m) and remnant polarization (~20 mC/m2 to ~60 mC/m2). The combination of the mentioned characteristics resulted in a record polarization retention time of close to 3 months at room temperature for capacitor devices of the material having the shortest alkyl chain – BTA-C6, which at the time of writing was one of the best results for liquid-crystalline ferroelectrics. Taking one step further, we experimentally demonstrated how introduction of branched-tailsubstituents results in materials with a wide operating temperature range and a data retention time of more than 10 years in thin-film solution-processed capacitor devices already atelevated temperatures with no measurable depolarization at room temperature. The observed differences between linear- and branched-tail compounds were analysed using density functional theory (DFT) and molecular dynamics (MD) simulations. We concluded that morphological factors like improved packing quality and reduced disorder, rather than electrostatic interactions or intra/inter-columnar steric hindrance, underlay the superior properties of the branched-tailed BTAs. Synergistic effects upon blending of compounds with branched and linear sidechains were shown to further improve the materials’ characteristics. Exploiting the excellent ferroelectric performance and the well-defined nanostructure of BTAs, we experimentally determined the Preisach (hysteron) distribution of BTA and confronted it to the one obtained for the semi-crystalline P(VDF:TrFE). This allowed to elucidate how the broadening of the Preisach distribution relates to the materials’ morphology. We further connected the experimental Preisach distribution to the corresponding microscopic switching kinetics. We argue that the combination of the two underlays the macroscopic dispersive switching kinetics as commonly observed for practical ferroelectrics. These insights lead to guidelines for further advancement of ferroelectric materials both for conventional and multi-bit data storage applications. Although having strong differences in the Preisach distribution, BTA and P(VDF:TrFE) both demonstrate negative piezoelectricity – a rare anomalous phenomenon which is characteristic to two-phased materials and has never been observed in small-molecular ferroelectrics. We measured a pronounced negative piezoelectric effect in a whole family of BTAs and revealed its tunability by mesogenic tail substitution and structural disorder. While the large- and small-signal strain in highly ordered thin-film BTA capacitor devices are dominated by intrinsic contributions and originates from piezostriction, rising disorder introduces additional extrinsic factors that boost the large-signal d33 up to ?20 pm/V in short-tailed molecules. Interestingly, homologues with longer mesogenic tails show a large-signal electromechanical response that is dominated by the quadratic Maxwell strain with significant mechanical softening upon polarization switching, whereas the small-signal strain remains piezostrictive. Molecular dynamics and DFT calculations both predict a positive d33 for defect-free BTA stacks. Hence, the measured negative macroscopic d33 is attributed to the presence of structural defects that enable the dimensional effect to dominate the piezoelectric response of BTA thin films. The true multifunctionality of supramolecular discotics manifests when large semiconducting cores surrounded by field-switchable strongly polar moieties are introduced in the structure. We showed how the combination of switchable dipolar side groups and the semiconducting core of the newly synthetized C3-symmetric benzotristhiophene molecule (BTTTA) leads to an ordered columnar material showing continuous tunability from injection- to bulk-limited conductivity modulation. Both these resistive switching mechanisms may lead to the next-generation high-density non-volatile rewritable memory devices with high on/off ratios and non-destructive data readout – the element that has been desperately sought after to enablefully organic flexible electronics. Utbredd elektronisering och det högst aktuella fenomenet sakernas internet (Internet of Things) ställer höga krav på nästa generations elektroniska system. Produkterna ska vara lätta att framställa med miljövänliga metoder, låg kostnadsproduktion och skalbarhet (t. ex. tryckt elektronik), återvinningsbarhet eller biologisk nedbrytbarhet (gällande engångselektronik), mekanisk flexibilitet (formbara bärbara system), kemisk stabilitet, till och med biokompatibilitet (t. ex. implanterbara system) – dessa är bara några utmaningar som den kommande tekniken behöver övervinna. Organiska material kan åstadkomma alla dessa önskade egenskaper, samtidigt som man skapar unika möjligheter att kombinera flera funktionaliteter till en enda sammansättning som underlättar nydanande komponenter och design. Ferroelektriska material kännetecknas av pyroelektriska, piezoelektriska och dielektriska egenskaper. Denna mångsidighet möjliggör icke-flyktiga minnesenheter, temperatur- och taktila sensorer, olika transduktorer och manöverdon, som alla baseras på förändringar av den ferroelektriska restpolarisationen genom fält-, temperatur- och / eller mekaniska stimuleringar. Diskformade supramolekylära organiska ferroelektriska ämnen ger ytterligare fördelar tack vare deras modifierbara molekylstrukturer och starka hierarkiska självorganisation som staplar diskarna i kolumner. På detta sätt kan lättbearbetningsbara organiska ferroelektriska material med hög restpolarisering och extrem datalagring konstrueras molekylärt. På grund av deras väldefinierade nanostrukturer kan sådana material användas som modellsystem för att förstå det allmänna beteendet hos polykristallina ferroelektriska material. De uppvisar också ensällsynt negativ piezoelektricitet som är atypisk för små molekylära material och härrör från deras komplexa nanostruktur. Den verkliga multifunktionaliteten hos diskformade supramolekylära ämnen framträder när stora halvledande kärnor omgivna av starkt polära delar, som är växlingsbara via ett elektriskt fält, introduceras i strukturen. Oöverträffad resistiv omkoppling, inducerad av den asymmetriska laddningstransporten beroende på polarisationsriktningen med rekordhög datalagringstid, upptäcktes efter optimering av molekylstrukturen. Även en konceptuellt enklare resistiv omkopplingsmekanism bunden till en modulation av laddningsinjektionsbarriären genom gränssnittsdipolerna observerades. Båda dessa fenomen kan bidra till nästa generations icke-flyktiga överskrivningsbara minnesenheter med högdensitet, stora på av-förhållanden, och icke-destruktiv dataavläsning – vilket är kritiskt för att möjliggöra helt organisk flexibel elektronik.

Switching Kinetics and Charge Transport in Organic Ferroelectrics

Switching Kinetics and Charge Transport in Organic Ferroelectrics
Author: Tim Cornelissen
Publsiher: Linköping University Electronic Press
Total Pages: 94
Release: 2020-08-26
ISBN: 9179298281
Category: Electronic books
Language: EN, FR, DE, ES & NL

Switching Kinetics and Charge Transport in Organic Ferroelectrics Book Excerpt:

The continued digitalization of our society means that more and more things are getting connected electronically. Since currently used inorganic electronics are not well suited for these new applications because of costs and environmental issues, organic electronics can play an important role here. These essentially plastic materials are cheap to produce and relatively easy to recycle. Unfortunately, their poor performance has so far hindered widespread application beyond displays. One key component of any electronic device is the memory. For organic electronics several technologies are being investigated that could serve as memories. One of these are the ferroelectrics, materials that have a spontaneous electrical polarization that can be reversed with an electric field. This bistable polarization which shows hysteresis makes these materials excellent candidates for use as memories. This thesis focuses on a specific type of organic ferroelectric, the supramolecular discotics. These materials consist of disk?like molecules that form columns in which all dipolar groups are aligned, giving a macroscopic ferroelectric polarization. Of particular interest are the benzenetricarboxamides (BTA), which are used as a model system for the whole class of discotic ferroelectrics. BTA uses a core?shell architecture which allows for easy modification of the molecular structure and thereby the ferroelectric properties. To gain a deeper understanding of the switching processes in this organic ferroelectric BTA, both microscopic and analytical modeling are used. This is supported by experimental data obtained through electrical characterization. The microscopic model reduces the material to a collection of dipoles and uses electrostatics to calculate the probability that these dipoles flip. These flipping rates are the input for a kinetic Monte Carlo simulation (kMC), which simulates the behavior of the dipoles over time. With this model we simulated three different switching processes on experimental time and length scales: hysteresis loops, spontaneous depolarization, and switching transients. The results of these simulations showed a good agreement with experiments and we can rationalize the obtained parameter dependencies in the framework of thermally activated nucleation limited switching (TA?NLS). The microscopic character of the model allows for a unique insight into the nucleation process of the polarization switching. We found that nucleation happens at different locations for field driven polarization switching as compared to spontaneous polarization switching. Field?driven nucleation happens at the contacts, whereas spontaneous depolarization starts at defects. This means that retention times in disordered ferroelectrics could be improved by reducing the disorder, without affecting the coercive field. Detailed analysis of the nucleation process also revealed a critical nucleation volume that decreases with applied field, which explains the Merz?like field?dependence of the switching time observed in experiments. In parallel to these microscopic simulations we developed an analytical framework based on the theory of TA?NLS. This framework is mainly focused on describing the switching transients of disordered ferroelectrics. It can be combined with concepts of the Preisach model, which considers a non?ideal ferroelectric as a collection of ideal hysterons. We were able to relate these hysterons and the distribution in their up? and down?switching fields to the microscopic structure of the material and use the combined models to explain experimentally observed dispersive switching kinetics. Whereas ferroelectrics on their own could potentially serve as memories, the readout of ferroelectric memories becomes easier if they are combined with semiconductors. We have introduced several molecular materials following the same design principle of a core?shell structure, which uniquely combine ferroelectricity and semiconductivity in one material. The experimental IV?curves of these materials could be described using an asymmetric Marcus hopping model and show their potential as memories. The combination of modeling and experimental work in this thesis thereby provides an increased understanding of organic ferroelectrics, which is crucial for their application as memories.

Ferroelectric Materials for Energy Applications

Ferroelectric Materials for Energy Applications
Author: Haitao Huang,James F. Scott
Publsiher: John Wiley & Sons
Total Pages: 384
Release: 2019-01-04
ISBN: 3527342710
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Ferroelectric Materials for Energy Applications Book Excerpt:

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.

Molecular Modeling and Multiscaling Issues for Electronic Material Applications

Molecular Modeling and Multiscaling Issues for Electronic Material Applications
Author: Artur Wymyslowski,Nancy Iwamoto,Matthew Yuen,Haibo Fan
Publsiher: Springer
Total Pages: 194
Release: 2014-11-20
ISBN: 3319128620
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Molecular Modeling and Multiscaling Issues for Electronic Material Applications Book Excerpt:

This book offers readers a snapshot of the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand materials to solve relevant issues in this field. The reader is introduced to the evolving role of molecular modeling, especially seen from the perspective of the IEEE community and modeling in electronics. This book also covers the aspects of molecular modeling needed to understand the relationship between structures and mechanical performance of materials. The authors also discuss the transitional topic of multiscale modeling and recent developments on the atomistic scale and current attempts to reach the submicron scale, as well as the role that quantum mechanics can play in performance prediction.

Electrically Active Materials for Medical Devices

Electrically Active Materials for Medical Devices
Author: Syed A M Tofail,Joanna Bauer
Publsiher: World Scientific
Total Pages: 135
Release: 2016-08-04
ISBN: 178326988X
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Electrically Active Materials for Medical Devices Book Excerpt:

Stress induced electrical charges, action potential and electret behavior of bone, muscles, skin and nerve cells have been known for some time. Electrically Active Materials for Medical Devices builds on this knowledge and encourages readers to understand and exploit electrical activity in biomaterials from native, derived, or completely synthetic origin, or a combination thereof. It presents data and insights from both historic and contemporary research that spans over six decades with a view to generate convergence of interdisciplinary knowledge and skills. Divided into four parts, this book first introduces the reader to a general overview of electrically active materials in biology and biomedical science and describes important concepts and pioneering discoveries. The second part discusses common types of materials that are known to generate electrical activity and lays the foundation for these materials for use in medical devices. The third part gives examples of where electrically active materials have been examined for device application. The final part looks for upcoming and emerging concepts, tools and methodologies that are expected to shape the future profile of this field of converging science. Written by specialists in their respective fields, it has been specifically targeted at a readership of professionals, graduate students and researchers in the fields of biomedical engineering, physics, chemistry biology and clinical medicine.

Electrical Memory Materials and Devices

Electrical Memory Materials and Devices
Author: Wen-Chang Chen
Publsiher: Royal Society of Chemistry
Total Pages: 408
Release: 2015-10-16
ISBN: 1782622500
Category: Science
Language: EN, FR, DE, ES & NL

Electrical Memory Materials and Devices Book Excerpt:

Information technology is essential to our daily life, and the limitations of silicone based memory systems mean a growing amount of research is focussed on finding an inexpensive alternative to meet our needs and allow the continued development of the industry. Inorganic silicone based technology is increasingly costly and complex and is physically limited by the problems of scaling down. Organic electrical memory devices are comparatively low cost, offer flexibility in terms of chemical structure, are compatible with flexible substrates and allow easy processing. For these reasons polymeric memory nanoscale materials are considered by many to be a potential substitute for conventional semiconductor memory systems. This edited book focusses solely on organic memory devices, providing a full background and overview of the area before bringing the reader up to date with the current and ongoing research in this area. The broad appeal of this book will be applicable to a wide range of researchers and those working in industry, in particular those working in materials, electrical and chemical engineering.

Ferroelectrics and Their Applications

Ferroelectrics and Their Applications
Author: Husein Irzaman,Renan Prasta Jenie
Publsiher: BoD – Books on Demand
Total Pages: 166
Release: 2018-10-03
ISBN: 1789840139
Category: Science
Language: EN, FR, DE, ES & NL

Ferroelectrics and Their Applications Book Excerpt:

Ferroelectricity is a symptom of inevitable electrical polarization changes in materials without external electric field interference. Ferroelectricity is a phenomenon exhibited by crystals with a spontaneous polarization and hysteresis effects associated with dielectric changes when an electric field is given. Our fascination with ferroelectricity is in recognition of a beautiful article by Itskovsky, in which he explains the kinetics of a ferroelectric phase transition in a thin ferroelectric layer (film). We have been researching ferroelectric materials since 2001. There are several materials known for their ferroelectric properties. Barium titanate and barium strontium titanate are the most well known. Several others include tantalum oxide, lead zirconium titanate, gallium nitride, lithium tantalate, aluminium, copper oxide, and lithium niobate. There is still a blue ocean of ferroelectric applications yet to be expounded. It is and hopefully always will be a bright future.

Ferroelectric Gate Field Effect Transistor Memories

Ferroelectric Gate Field Effect Transistor Memories
Author: Byung-Eun Park,Hiroshi Ishiwara,Masanori Okuyama,Shigeki Sakai,Sung-Min Yoon
Publsiher: Springer Nature
Total Pages: 425
Release: 2020-03-23
ISBN: 9811512124
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Ferroelectric Gate Field Effect Transistor Memories Book Excerpt:

This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.

Ferroelectrics

Ferroelectrics
Author: Indrani Coondoo
Publsiher: BoD – Books on Demand
Total Pages: 466
Release: 2010-12-14
ISBN: 9533074396
Category: Science
Language: EN, FR, DE, ES & NL

Ferroelectrics Book Excerpt:

Ferroelectric materials exhibit a wide spectrum of functional properties, including switchable polarization, piezoelectricity, high non-linear optical activity, pyroelectricity, and non-linear dielectric behaviour. These properties are crucial for application in electronic devices such as sensors, microactuators, infrared detectors, microwave phase filters and, non-volatile memories. This unique combination of properties of ferroelectric materials has attracted researchers and engineers for a long time. This book reviews a wide range of diverse topics related to the phenomenon of ferroelectricity (in the bulk as well as thin film form) and provides a forum for scientists, engineers, and students working in this field. The present book containing 24 chapters is a result of contributions of experts from international scientific community working in different aspects of ferroelectricity related to experimental and theoretical work aimed at the understanding of ferroelectricity and their utilization in devices. It provides an up-to-date insightful coverage to the recent advances in the synthesis, characterization, functional properties and potential device applications in specialized areas.

The RF and Microwave Handbook 3 Volume Set

The RF and Microwave Handbook   3 Volume Set
Author: Mike Golio
Publsiher: CRC Press
Total Pages: 2208
Release: 2018-10-08
ISBN: 1439833230
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

The RF and Microwave Handbook 3 Volume Set Book Excerpt:

By 1990 the wireless revolution had begun. In late 2000, Mike Golio gave the world a significant tool to use in this revolution: The RF and Microwave Handbook. Since then, wireless technology spread across the globe with unprecedented speed, fueled by 3G and 4G mobile technology and the proliferation of wireless LANs. Updated to reflect this tremendous growth, the second edition of this widely embraced, bestselling handbook divides its coverage conveniently into a set of three books, each focused on a particular aspect of the technology. Six new chapters cover WiMAX, broadband cable, bit error ratio (BER) testing, high-power PAs (power amplifiers), heterojunction bipolar transistors (HBTs), as well as an overview of microwave engineering. Over 100 contributors, with diverse backgrounds in academic, industrial, government, manufacturing, design, and research reflect the breadth and depth of the field. This eclectic mix of contributors ensures that the coverage balances fundamental technical issues with the important business and marketing constraints that define commercial RF and microwave engineering. Focused chapters filled with formulas, charts, graphs, diagrams, and tables make the information easy to locate and apply to practical cases. The new format, three tightly focused volumes, provides not only increased information but also ease of use. You can find the information you need quickly, without wading through material you don’t immediately need, giving you access to the caliber of data you have come to expect in a much more user-friendly format.

Piezoelectric Nanomaterials for Biomedical Applications

Piezoelectric Nanomaterials for Biomedical Applications
Author: Gianni Ciofani,Arianna Menciassi
Publsiher: Springer Science & Business Media
Total Pages: 250
Release: 2012-03-31
ISBN: 3642280447
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Piezoelectric Nanomaterials for Biomedical Applications Book Excerpt:

Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

Small Molecule Organic Ferroelectric Cocrystal Thin Films

Small Molecule Organic Ferroelectric Cocrystal Thin Films
Author: Adam C. Jandl
Publsiher: Unknown
Total Pages: 80
Release: 2009
ISBN: 1928374650XXX
Category: Electronic Book
Language: EN, FR, DE, ES & NL

Small Molecule Organic Ferroelectric Cocrystal Thin Films Book Excerpt:

Atomic Force Microscopy for Energy Research

Atomic Force Microscopy for Energy Research
Author: Cai Shen
Publsiher: CRC Press
Total Pages: 455
Release: 2022-04-27
ISBN: 1000577872
Category: Science
Language: EN, FR, DE, ES & NL

Atomic Force Microscopy for Energy Research Book Excerpt:

Atomic force microscopy (AFM) can be used to analyze and measure the physical properties of all kinds of materials at nanoscale in the atmosphere, liquid phase, and ultra-high vacuum environment. It has become an important tool for nanoscience research. In this book, the basic principles of functional AFM techniques and their applications in energy materials—such as lithium-ion batteries, solar cells, and other energy-related materials—are addressed. FEATURES First book to focus on application of AFM for energy research Details the use of advanced AFM and addresses many types of functional AFM tools Enables readers to operate an AFM instrument successfully and to understand the data obtained Covers new achievements in AFM instruments, including electrochemical strain microscopy, and how AFM is being combined with other new methods such as infrared (IR) spectroscopy With its substantial content and logical structure, Atomic Force Microscopy for Energy Research is a valuable reference for researchers in materials science, chemistry, and physics who are working with AFM or planning to use it in their own fields of research, especially energy research.

Ferroelectric Materials

Ferroelectric Materials
Author: Aimé Peláiz-Barranco
Publsiher: BoD – Books on Demand
Total Pages: 256
Release: 2015-07-29
ISBN: 9535121472
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Ferroelectric Materials Book Excerpt:

Ferroelectric materials receive great attention from the scientific international community because of the interesting phenomena they exhibit and their multiple applications such as transducers, capacitors, pyroelectric sensors, sonars, random access memories, etc. The demand for ferroelectric materials for technological applications enforced the in-depth research, in addition to the improvement of processing and characterization techniques. This book contains nine chapters and offers the results of several researches covering fabrication, properties, theoretical topics, and phenomena at the nanoscale.

Ferroelectrics

Ferroelectrics
Author: Mickaël Lallart
Publsiher: BoD – Books on Demand
Total Pages: 668
Release: 2011-08-23
ISBN: 9533074531
Category: Science
Language: EN, FR, DE, ES & NL

Ferroelectrics Book Excerpt:

Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on the underlying mechanisms of ferroelectric materials, including general ferroelectric effect, piezoelectricity, optical properties, and multiferroic and magnetoelectric devices. The aim of this book is to provide an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric systems, allowing a deep understanding of the physical aspect of ferroelectricity.

Large Area and Flexible Electronics

Large Area and Flexible Electronics
Author: Mario Caironi,Yong-Young Noh
Publsiher: John Wiley & Sons
Total Pages: 588
Release: 2015-05-04
ISBN: 3527336397
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Large Area and Flexible Electronics Book Excerpt:

From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.

Advanced Structural Chemistry

Advanced Structural Chemistry
Author: Rong Cao
Publsiher: John Wiley & Sons
Total Pages: 1088
Release: 2021-03-08
ISBN: 3527831738
Category: Science
Language: EN, FR, DE, ES & NL

Advanced Structural Chemistry Book Excerpt:

Advanced Structural Chemistry Discover the relationships between inorganic chemical synthesis, structure, and property with these comprehensive and insightful volumes Advanced Structural Chemistry: Tailoring Properties of Inorganic Materials and their Applications (3 Volume Set) offers readers the opportunity to discover the relationship between the structure and function of matter, develop efficient and precise synthesis methodology, and to understand the theoretical tools for new functional substances. Advanced Structural Chemistry clarifies the relationships between synthesis and structure, as well as structure and property, both of which are central to the creation of new materials with unique functions. In addition to subjects like the syntheses of metal-oxide clusters, metal-organic cages, and metal-organic frameworks with tailored optical, electric, ferroelectric, magnetic, adsorption, separation, and catalytic properties, the accomplished editor Rong Cao provides readers with information on a wide variety of topics, such as: Coordination-assembled metal-organic macrocycles and cages, including metallacycles and metallacages The structural chemistry of metal-oxo clusters, including the oxo clusters of transition metal, main group metal, and lanthanides Synthetic approaches, structural diversities, and biological aspects of molybdenum-based heterometallic sulfide clusters and coordination polymers Group 11-15 metal chalcogenides, including discrete chalcogenide clusters synthesized in ionic liquids The structures of metal-organic frameworks, including one-, two-, and three-dimensional MOFs Perfect for inorganic chemists, structural chemists, solid state chemists, material scientists, and solid state physicists, Advanced Structural Chemistry also belongs on the bookshelves of catalytic and industrial chemists who seek to improve their understanding of the structure and functions of inorganic materials.

Nano catalysts for Energy Applications

Nano catalysts for Energy Applications
Author: Rohit Srivastava
Publsiher: CRC Press
Total Pages: 210
Release: 2021-07-29
ISBN: 1000392961
Category: Technology & Engineering
Language: EN, FR, DE, ES & NL

Nano catalysts for Energy Applications Book Excerpt:

This book comprises of chapters based on design of various advanced nano-catalysts and offers a development of novel solutions for a better sustainable energy future. The book includes all aspects of physical chemistry, chemical engineering and material science. The advances in nanoscience and nanotechnology help to find cost-effective and environmentally sound methods of converting naturally inspired resources into fuels, chemicals and energy. The book leads the scientific community to the most significant development in the focus research area. It provides a broad and in-depth coverage of design and development advanced nano-catalyst for various energy applications.