Data Mining With R

Author by : Luis Torgo
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 68
Total Download : 519
File Size : 51,8 Mb
pdf pdf

Description : Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.


Data Analytics Using R

Author by : Seema Acharya
Languange : en
Publisher by : McGraw-Hill Education
Format Available : PDF, ePub, Mobi
Total Read : 61
Total Download : 438
File Size : 41,8 Mb
pdf pdf

Description : Overview: This book is aimed at undergraduate students of computer science and engineering. The book will be useful companion for IT professionals to data analysts and decision makers responsible for driving strategic initiatives, and management graduates and business analysts, engaged in self-study. This book by Acharya unleashes the power of R as a statistical data analytics and visualization tool and introduces the learners to several data mining algorithms and chart forms / visualizations. It has good emphasis on ‘asking the right questions’. Salient Features: - Exhaustive coverage includes installation of R and its package, getting accustomed to R interface and R commands, working with data from disparate data sources (.csv, JSON, XML, RDBMS etc.), getting conversant with classification, clustering, association rule mining, regression, text mining etc. - 12 Case studies namely Insurance Fraud Detection, Customer Insights Analysis, Sales Forecasting, Credit Card Spending by Customer Groups and Helping Retailers Predict In-store Customer Traffic - Pedagogical features: * 300+ chapter-end and check your progress questions for self-assessment * 200 Multiple-choice questions * 10+ hands-on practical exercises * Exhaustive illustrations


A Hands On Introduction To Data Science

Author by : Chirag Shah
Languange : en
Publisher by : Cambridge University Press
Format Available : PDF, ePub, Mobi
Total Read : 16
Total Download : 935
File Size : 53,7 Mb
pdf pdf

Description : An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.


Mastering Text Mining With R

Author by : Ashish Kumar
Languange : en
Publisher by : Packt Publishing Ltd
Format Available : PDF, ePub, Mobi
Total Read : 11
Total Download : 475
File Size : 47,6 Mb
pdf pdf

Description : Master text-taming techniques and build effective text-processing applications with R About This Book Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide Gain in-depth understanding of the text mining process with lucid implementation in the R language Example-rich guide that lets you gain high-quality information from text data Who This Book Is For If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful. What You Will Learn Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process Access and manipulate data from different sources such as JSON and HTTP Process text using regular expressions Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA) Build a baseline sentence completing application Perform entity extraction and named entity recognition using R In Detail Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media. Style and approach This book takes a hands-on, example-driven approach to the text mining process with lucid implementation in R.


Practical Data Science With Sap

Author by : Greg Foss
Languange : en
Publisher by : "O'Reilly Media, Inc."
Format Available : PDF, ePub, Mobi
Total Read : 9
Total Download : 447
File Size : 41,6 Mb
pdf pdf

Description : Learn how to fuse today's data science tools and techniques with your SAP enterprise resource planning (ERP) system. With this practical guide, SAP veterans Greg Foss and Paul Modderman demonstrate how to use several data analysis tools to solve interesting problems with your SAP data. Data engineers and scientists will explore ways to add SAP data to their analysis processes, while SAP business analysts will learn practical methods for answering questions about the business. By focusing on grounded explanations of both SAP processes and data science tools, this book gives data scientists and business analysts powerful methods for discovering deep data truths. You'll explore: Examples of how data analysis can help you solve several SAP challenges Natural language processing for unlocking the secrets in text Data science techniques for data clustering and segmentation Methods for detecting anomalies in your SAP data Data visualization techniques for making your data come to life


Data Analysis With R

Author by : Tony Fischetti
Languange : en
Publisher by : Packt Publishing Ltd
Format Available : PDF, ePub, Mobi
Total Read : 66
Total Download : 217
File Size : 41,8 Mb
pdf pdf

Description : Load, wrangle, and analyze your data using the world's most powerful statistical programming language About This Book Load, manipulate and analyze data from different sources Gain a deeper understanding of fundamentals of applied statistics A practical guide to performing data analysis in practice Who This Book Is For Whether you are learning data analysis for the first time, or you want to deepen the understanding you already have, this book will prove to an invaluable resource. If you are looking for a book to bring you all the way through the fundamentals to the application of advanced and effective analytics methodologies, and have some prior programming experience and a mathematical background, then this is for you. What You Will Learn Navigate the R environment Describe and visualize the behavior of data and relationships between data Gain a thorough understanding of statistical reasoning and sampling Employ hypothesis tests to draw inferences from your data Learn Bayesian methods for estimating parameters Perform regression to predict continuous variables Apply powerful classification methods to predict categorical data Handle missing data gracefully using multiple imputation Identify and manage problematic data points Employ parallelization and Rcpp to scale your analyses to larger data Put best practices into effect to make your job easier and facilitate reproducibility In Detail Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. With over 7,000 user contributed packages, it's easy to find support for the latest and greatest algorithms and techniques. Starting with the basics of R and statistical reasoning, Data Analysis with R dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone's career as a data analyst. Style and approach Learn data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach.


R Graphics Essentials For Great Data Visualization

Author by : Alboukadel Kassambara
Languange : en
Publisher by : STHDA
Format Available : PDF, ePub, Mobi
Total Read : 17
Total Download : 493
File Size : 53,8 Mb
pdf pdf

Description : Data visualization is one of the most important part of data science. Many books and courses present a catalogue of graphics but they don't teach you which charts to use according to the type of the data. In this book, we start by presenting the key graphic systems and packages available in R, including R base graphs, lattice and ggplot2 plotting systems. Next, we provide more than 200 practical examples to create great graphics for the right data using either the ggplot2 package and extensions or the traditional R graphics. With this book, you 'll learn: - How to quickly create beautiful graphics using ggplot2 packages - How to properly customize and annotate the plots - Type of graphics for visualizing categorical and continuous variables - How to add automatically p-values to box plots, bar plots and alternatives - How to add marginal density plots and correlation coefficients to scatter plots - Key methods for analyzing and visualizing multivariate data - R functions and packages for plotting time series data - How to combine multiple plots on one page to create production-quality figures.


Introductory Statistics With R

Author by : Peter Dalgaard
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 58
Total Download : 889
File Size : 54,8 Mb
pdf pdf

Description : This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.


R For Political Data Science

Author by : Francisco Urdinez
Languange : en
Publisher by : CRC Press
Format Available : PDF, ePub, Mobi
Total Read : 95
Total Download : 248
File Size : 40,7 Mb
pdf pdf

Description : R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.


Health Informatics Sixth Edition Supplement Practical Guide For Healthcare And Information Technology Professionals

Author by : Ann K. Yoshihashi
Languange : en
Publisher by : Lulu.com
Format Available : PDF, ePub, Mobi
Total Read : 61
Total Download : 602
File Size : 44,8 Mb
pdf pdf

Description : Health Informatics: Practical Guide for Health and Information Technology Professionals Sixth Edition Supplement adds 3 new chapters. The supplement has learning objectives, case studies, recommended reading, future trends, key points, and references. Introduction to Data Science, provides a comprehensive overview with topics including databases, machine learning, big data and predictive analytics. Clinical Decision Support (CDS), covers current and salient aspects of CDS functionality, implementation, benefits, challenges and lessons learned. International Health Informatics, highlights the informatics initiatives of developed and developing countries on each continent. Available as a paperback and eBook. For more information about the textbook, visit www.informaticseducation.org. For instructors, an Instructor Manual, PDF version and PowerPoint slides are available under the Instructor's tab.