Quantum Information Processing Quantum Computing and Quantum Error Correction

Quantum Information Processing  Quantum Computing  and Quantum Error Correction
Author: Ivan B. Djordjevic
Publsiher: Academic Press
Total Pages: 838
Release: 2021-03-08
ISBN: 0128219823
Category: Science
Language: EN, FR, DE, ES & NL

Quantum Information Processing Quantum Computing and Quantum Error Correction Book Excerpt:

The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publsiher: Academic Press
Total Pages: 597
Release: 2012-04-16
ISBN: 0123854911
Category: Computers
Language: EN, FR, DE, ES & NL

Quantum Information Processing and Quantum Error Correction Book Excerpt:

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Information Processing Quantum Computing and Quantum Error Correction

Quantum Information Processing  Quantum Computing  and Quantum Error Correction
Author: Ivan Djordjevic
Publsiher: Academic Press
Total Pages: 838
Release: 2021-02-20
ISBN: 0128219874
Category: Science
Language: EN, FR, DE, ES & NL

Quantum Information Processing Quantum Computing and Quantum Error Correction Book Excerpt:

The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publsiher: Academic Press
Total Pages: 600
Release: 2012-05-23
ISBN: 012385492X
Category: Science
Language: EN, FR, DE, ES & NL

Quantum Information Processing and Quantum Error Correction Book Excerpt:

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction – everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information
Author: Michael A. Nielsen,Isaac L. Chuang
Publsiher: Cambridge University Press
Total Pages: 135
Release: 2010-12-09
ISBN: 1139495488
Category: Science
Language: EN, FR, DE, ES & NL

Quantum Computation and Quantum Information Book Excerpt:

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Information Processing

Quantum Information Processing
Author: Dimitris G. Angelakis
Publsiher: IOS Press
Total Pages: 373
Release: 2006
ISBN: 1586036114
Category: Science
Language: EN, FR, DE, ES & NL

Quantum Information Processing Book Excerpt:

"The Antikythera mechanism was probably the worlds first analog computer a sophisticated device for calculating the motions of stars and planets. This remarkable assembly of more than 30 gears with a differential mechanism, made on Rhodes or Cos in the first century B.C., revised the view of what the ancient Greeks were capable of creating at that time. A comparable level of engineering didnt become widespread until the industrial revolution nearly two millennia later. This collection of papers provides a good overview of the current state-of-the-art of quantum information science. We do not know how a quantum Antikythera will look like but all we know is that the best way to predict the future is to create it. From the perspective of the future, it may well be that the real computer age has not yet even begun."

Classical and Quantum Information

Classical and Quantum Information
Author: Dan C. Marinescu
Publsiher: Academic Press
Total Pages: 744
Release: 2011-01-07
ISBN: 9780123838759
Category: Mathematics
Language: EN, FR, DE, ES & NL

Classical and Quantum Information Book Excerpt:

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes Covers both classical and quantum information theory and error correcting codes The last chapter of the book covers physical implementation of quantum information processing devices Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information

Physical Layer Security and Quantum Key Distribution

Physical Layer Security and Quantum Key Distribution
Author: Ivan B. Djordjevic
Publsiher: Springer Nature
Total Pages: 472
Release: 2019-09-14
ISBN: 3030275655
Category: Computers
Language: EN, FR, DE, ES & NL

Physical Layer Security and Quantum Key Distribution Book Excerpt:

This textbook integrates the most advanced topics of physical-layer security, cryptography, covert/stealth communications, quantum key distribution (QKD), and cyber security to tackle complex security issues. After introducing the reader to various concepts and practices, the author addresses how these can work together to target problems, rather than treating them as separate disciplines. This book offers students an in-depth exposition on: cryptography, information-theoretic approach to cryptography, physical-layer security, covert/stealth/low-probability of detection communications, quantum information theory, QKD, and cyber security; to mention few. The goal is to provide a unified description of the most advanced topics related to: (i) modern cryptography, (ii) physical-layer security, (iii) QKD, (iv) covert communications, and (v) cyber security. Each chapter is followed by a set of problems. Also, for readers to better understand the book, an appendix covers all needed background. Homework problems and lecture notes are available online. The book does not require any prior knowledge or prerequisite material.

Encyclopaedia of Mathematics Supplement III

Encyclopaedia of Mathematics  Supplement III
Author: Michiel Hazewinkel
Publsiher: Springer Science & Business Media
Total Pages: 557
Release: 2007-11-23
ISBN: 0306483734
Category: Mathematics
Language: EN, FR, DE, ES & NL

Encyclopaedia of Mathematics Supplement III Book Excerpt:

This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Multimedia Technologies in the Internet of Things Environment Volume 3

Multimedia Technologies in the Internet of Things Environment  Volume 3
Author: Raghvendra Kumar,Rohit Sharma (Assistant professor of electronics),Prasant Kumar Pattnaik
Publsiher: Springer Nature
Total Pages: 237
Release: 2022
ISBN: 9811909245
Category: Artificial intelligence
Language: EN, FR, DE, ES & NL

Multimedia Technologies in the Internet of Things Environment Volume 3 Book Excerpt:

This book proposes a comprehensive overview of the state-of-the-art research work on multimedia analysis in IoT applications. This is a third volume by editors which provides theoretical and practical approach in the area of multimedia and IOT applications and performance analysis. Further, multimedia communication, deep learning models to multimedia data, and the new (IOT) approaches are also covered. It addresses the complete functional framework in the area of multimedia data, IoT, and smart computing techniques. It bridges the gap between multimedia concepts and solutions by providing the current IOT frameworks, their applications in multimedia analysis, the strengths and limitations of the existing methods, and the future directions in multimedia IOT analytics.

Quantum Error Correction

Quantum Error Correction
Author: Daniel A. Lidar,Todd A. Brun
Publsiher: Cambridge University Press
Total Pages: 592
Release: 2013-09-12
ISBN: 1107433835
Category: Science
Language: EN, FR, DE, ES & NL

Quantum Error Correction Book Excerpt:

Quantum computation and information is one of the most exciting developments in science and technology of the last twenty years. To achieve large scale quantum computers and communication networks it is essential not only to overcome noise in stored quantum information, but also in general faulty quantum operations. Scalable quantum computers require a far-reaching theory of fault-tolerant quantum computation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction and thoroughly covers the theory as well as experimental and practical issues. The book is not limited to a single approach, but reviews many different methods to control quantum errors, including topological codes, dynamical decoupling and decoherence-free subspaces. Basic subjects as well as advanced theory and a survey of topics from cutting-edge research make this book invaluable both as a pedagogical introduction at the graduate level and as a reference for experts in quantum information science.

Quantum Computing and Communications

Quantum Computing and Communications
Author: Michael Brooks
Publsiher: Springer
Total Pages: 152
Release: 1999-05-21
ISBN: 1928374650XXX
Category: Business & Economics
Language: EN, FR, DE, ES & NL

Quantum Computing and Communications Book Excerpt:

Quantum computing and communications (QCC) has the potential to revolutionize information processing through super-fast computers operating at the sub-atomic scale. This handbook provides the first comprehensive inter-disciplinary overview of QCC, covering the major application areas, principles and definitions of key QCC topics, as well as new perspectives, targets, benchmarks, and challenges. 30 illustrations.

Quantum Computation

Quantum Computation
Author: American Mathematical Society. Short Course,Samuel J. Lomonaco,American Mathematical Society
Publsiher: American Mathematical Soc.
Total Pages: 377
Release: 2002
ISBN: 0821820842
Category: Mathematics
Language: EN, FR, DE, ES & NL

Quantum Computation Book Excerpt:

This book presents written versions of the eight lectures given during the AMS Short Course held at the Joint Mathematics Meetings in Washington, D.C. The objective of this course was to share with the scientific community the many exciting mathematical challenges arising from the new field of quantum computation and quantum information science. The course was geared toward demonstrating the great breadth and depth of this mathematically rich research field. Interrelationships withexisting mathematical research areas were emphasized as much as possible. Moreover, the course was designed so that participants with little background in quantum mechanics would, upon completion, be prepared to begin reading the research literature on quantum computation and quantum informationscience. Based on audience feedback and questions, the written versions of the lectures have been greatly expanded, and supplementary material has been added. The book features an overview of relevant parts of quantum mechanics with an introduction to quantum computation, including many potential quantum mechanical computing devices; introduction to quantum algorithms and quantum complexity theory; in-depth discussion on quantum error correcting codes and quantum cryptography; and finally,exploration into diverse connections between quantum computation and various areas of mathematics and physics.

Classical and Quantum Information

Classical and Quantum Information
Author: Dan C. Marinescu,Gabriela M. Marinescu
Publsiher: Unknown
Total Pages: 725
Release: 2012
ISBN: 9780123838742
Category: Computers
Language: EN, FR, DE, ES & NL

Classical and Quantum Information Book Excerpt:

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. This book covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes. Covers both classical and quantum information theory and error correcting codes. The last chapter of the book covers physical implementation of quantum information processing devices. Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information.

Introduction to Optical Quantum Information Processing

Introduction to Optical Quantum Information Processing
Author: Pieter Kok,Brendon W. Lovett
Publsiher: Cambridge University Press
Total Pages: 135
Release: 2010-04-22
ISBN: 1139486438
Category: Science
Language: EN, FR, DE, ES & NL

Introduction to Optical Quantum Information Processing Book Excerpt:

Quantum information processing offers fundamental improvements over classical information processing, such as computing power, secure communication, and high-precision measurements. However, the best way to create practical devices is not yet known. This textbook describes the techniques that are likely to be used in implementing optical quantum information processors. After developing the fundamental concepts in quantum optics and quantum information theory, the book shows how optical systems can be used to build quantum computers according to the most recent ideas. It discusses implementations based on single photons and linear optics, optically controlled atoms and solid-state systems, atomic ensembles, and optical continuous variables. This book is ideal for graduate students beginning research in optical quantum information processing. It presents the most important techniques of the field using worked examples and over 120 exercises.

Quantum Computing

Quantum Computing
Author: Eleanor G. Rieffel,Wolfgang H. Polak
Publsiher: MIT Press
Total Pages: 389
Release: 2014-08-29
ISBN: 0262526670
Category: Computers
Language: EN, FR, DE, ES & NL

Quantum Computing Book Excerpt:

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit or qubit. This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaining all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of linear algebra) will be able to gain a fluent understanding by working through the book.

Introduction to Quantum Information Science

Introduction to Quantum Information Science
Author: Masahito Hayashi,Satoshi Ishizaka,Akinori Kawachi,Gen Kimura,Tomohiro Ogawa
Publsiher: Springer
Total Pages: 332
Release: 2014-08-22
ISBN: 3662435020
Category: Computers
Language: EN, FR, DE, ES & NL

Introduction to Quantum Information Science Book Excerpt:

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.

Quantum Information Processing

Quantum Information Processing
Author: János A. Bergou,Mark Hillery,Mark Saffman
Publsiher: Springer Nature
Total Pages: 305
Release: 2021-09-14
ISBN: 3030754367
Category: Computers
Language: EN, FR, DE, ES & NL

Quantum Information Processing Book Excerpt:

This new edition of a well-received textbook provides a concise introduction to both the theoretical and experimental aspects of quantum information at the graduate level. While the previous edition focused on theory, the book now incorporates discussions of experimental platforms. Several chapters on experimental implementations of quantum information protocols have been added: implementations using neutral atoms, trapped ions, optics, and solidstate systems are each presented in its own chapter. Previous chapters on entanglement, quantum measurements, quantum dynamics, quantum cryptography, and quantum algorithms have been thoroughly updated, and new additions include chapters on the stabilizer formalism and the Gottesman-Knill theorem as well as aspects of classical and quantum information theory. To facilitate learning, each chapter starts with a clear motivation to the topic and closes with exercises and a recommended reading list. Quantum Information Processing: Theory and Implementation will be essential to graduate students studying quantum information as well as and researchers in other areas of physics who wish to gain knowledge in the field.

The Ninth Marcel Grossman Meeting MGIXMM

The Ninth Marcel Grossman Meeting  MGIXMM
Author: Robert T. Jantzen,Remo Ruffini,Vahe G. Gurzadyan
Publsiher: World Scientific
Total Pages: 2746
Release: 2002-12-01
ISBN: 9812380108
Category: Science
Language: EN, FR, DE, ES & NL

The Ninth Marcel Grossman Meeting MGIXMM Book Excerpt:

In 1975 the Marcel Grossmann Meetings were established by Remo Ruffini and Abdus Salam to provide a forum for discussion of recent advances in gravitation, general relativity, and relativistic field theories. In these meetings, which are held once every three years, every aspect of research is emphasized - mathematical foundations, physical predictions, and numerical and experimental investigations. The major objective of these meetings is to facilitate exchange among scientists, so as to deepen our understanding of the structure of space-time and to review the status of both the ground-based and the space-based experiments aimed at testing the theory of gravitation.The Marcel Grossmann Meetings have grown under the guidance of an International Organizing Committee and a large International Coordinating Committee. The first two meetings, MG1 and MG2, were held in Trieste (1975, 1979). A most memorable MG3 (1982) was held in Shanghai and represented the first truly international scientific meeting in China after the so-called Cultural Revolution. Three years later MG4 was held in Rome (1985). It was at MG4 that ';astroparticle physics'; was born.MGIXMM was organized by the International Organizing Committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg. Essential to the organization was an International Coordinating Committee of 135 members from scientific institutions of 54 countries. MGIXMM was attended by 997 scientists of 69 nationalities. It took place on 2-8 July 2000 at the University of Rome, Italy. The scientific programs included 60 plenary and review talks, as well as talks in 88 parallel sessions. The three volumes of the proceedings of MGIXMM present a rather authoritative view of relativistic astrophysics, which is becoming one of the priorities in scientific endeavour. The papers appearing in these volumes cover all aspects of gravitation, from mathematical issues to recent observations and experiments. Their intention is to give a complete picture of our current understanding of gravitational theory at the turn of the millennium.The Marcel Grossmann Individual Awards for this meeting were presented to Cecille and Bryce DeWitt, Riccardo Giacconi and Roger Penrose, while the Institutional Award went to the Solvay Institute, accepted on behalf of the Institute by Jacques Solvay and Ilya Prigogine. The acceptance speeches are also included in the proceedings.

Ninth Marcel Grossmann Meeting The On Recent Developments In Theoretical And Experimental General Relativity Gravitation Relativistic Field Theories In 3 Volumes Procs Of The Mgix Mm Meeting

Ninth Marcel Grossmann Meeting  The  On Recent Developments In Theoretical And Experimental General Relativity  Gravitation   Relativistic Field Theories  In 3 Volumes    Procs Of The Mgix Mm Meeting
Author: Gurzadyan Vahe G,Jantzen Robert T,Ruffini Remo
Publsiher: World Scientific
Total Pages: 2748
Release: 2002-12-12
ISBN: 9814488496
Category: Science
Language: EN, FR, DE, ES & NL

Ninth Marcel Grossmann Meeting The On Recent Developments In Theoretical And Experimental General Relativity Gravitation Relativistic Field Theories In 3 Volumes Procs Of The Mgix Mm Meeting Book Excerpt:

In 1975 the Marcel Grossmann Meetings were established by Remo Ruffini and Abdus Salam to provide a forum for discussion of recent advances in gravitation, general relativity, and relativistic field theories. In these meetings, which are held once every three years, every aspect of research is emphasized - mathematical foundations, physical predictions, and numerical and experimental investigations. The major objective of these meetings is to facilitate exchange among scientists, so as to deepen our understanding of the structure of space-time and to review the status of both the ground-based and the space-based experiments aimed at testing the theory of gravitation.The Marcel Grossmann Meetings have grown under the guidance of an International Organizing Committee and a large International Coordinating Committee. The first two meetings, MG1 and MG2, were held in Trieste (1975, 1979). A most memorable MG3 (1982) was held in Shanghai and represented the first truly international scientific meeting in China after the so-called Cultural Revolution. Three years later MG4 was held in Rome (1985). It was at MG4 that ';astroparticle physics'; was born.MGIXMM was organized by the International Organizing Committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg. Essential to the organization was an International Coordinating Committee of 135 members from scientific institutions of 54 countries. MGIXMM was attended by 997 scientists of 69 nationalities. It took place on 2-8 July 2000 at the University of Rome, Italy. The scientific programs included 60 plenary and review talks, as well as talks in 88 parallel sessions. The three volumes of the proceedings of MGIXMM present a rather authoritative view of relativistic astrophysics, which is becoming one of the priorities in scientific endeavour. The papers appearing in these volumes cover all aspects of gravitation, from mathematical issues to recent observations and experiments. Their intention is to give a complete picture of our current understanding of gravitational theory at the turn of the millennium.The Marcel Grossmann Individual Awards for this meeting were presented to Cecille and Bryce DeWitt, Riccardo Giacconi and Roger Penrose, while the Institutional Award went to the Solvay Institute, accepted on behalf of the Institute by Jacques Solvay and Ilya Prigogine. The acceptance speeches are also included in the proceedings.