Synthetic Biology And Metabolic Engineering In Plants And Microbes Part B Metabolism In Plants

Author by :
Languange : en
Publisher by : Elsevier
Format Available : PDF, ePub, Mobi
Total Read : 30
Total Download : 266
File Size : 50,6 Mb
pdf pdf

Description : Synthetic Biology and Metabolic Engineering in Plants and Microbes, Part B, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods, synthetic biology, and metabolic engineering in plants and microbes, and includes sections on such topics as the usage of integrases in microbial engineering, biosynthesis, and engineering of tryptophan derived metabolites, regulation and discovery of fungal natural products, and elucidation and localization of plant pathways. Continues the legacy of this premier serial with quality chapters authored by leaders in the field of enzymology Contains two volumes covering research methods in synthetic biology and metabolic engineering in plants and microbes Includes sections on such topics as the uses of integrases in microbial engineering, biosynthesis and engineering of tryptophan derived metabolites, regulation and discovery of fungal natural products, and elucidation and localization of plant pathways


Synthetic Biology And Metabolic Engineering In Plants And Microbes Part A Metabolism In Microbes

Author by :
Languange : en
Publisher by : Academic Press
Format Available : PDF, ePub, Mobi
Total Read : 90
Total Download : 365
File Size : 51,8 Mb
pdf pdf

Description : Synthetic Biology and Metabolic Engineering in Plants and Microbes: Part A, the new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods, synthetic biology, and metabolic engineering in plants and microbes, and includes sections on such topics as the uses of integrases in microbial engineering, biosynthesis, and engineering of tryptophan derived metabolites, regulation and discovery of fungal natural products, and elucidation and localization of plant pathways. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Contains two volumes covering research methods in synthetic biology and metabolic engineering in plants and microbes Presents sections on such topics as the uses of integrases in microbial engineering, biosynthesis, and engineering of tryptophan derived metabolites, regulation and discovery of fungal natural products, and elucidation and localization of plant pathways


Salinity Tolerance In Plants Mechanisms And Regulation Of Ion Transport

Author by : Vadim Volkov
Languange : en
Publisher by : Frontiers Media SA
Format Available : PDF, ePub, Mobi
Total Read : 35
Total Download : 302
File Size : 41,7 Mb
pdf pdf

Description : Life presumably arose in the primeval oceans with similar or even greater salinity than the present ocean, so the ancient cells were designed to withstand salinity. However, the immediate ancestors of land plants most likely lived in fresh, or slightly brackish, water. The fresh/brackish water origins might explain why many land plants, including some cereals, can withstand moderate salinity, but only 1 – 2 % of all the higher plant species were able to re-discover their saline origins again and survive at increased salinities close to that of seawater. From a practical side, salinity is among the major threats to agriculture, having been one of the reasons for the demise of the ancient Mesopotamian Sumer civilisation and in the present time causing huge annual economic losses of over 10 billion USD. The effects of salinity on plants include osmotic stress, disruption of membrane ion transport, direct toxicity of high cytoplasmic concentrations of sodium and chloride on cellular processes and induced oxidative stress. Ion transport is the crucial starting point that determines salinity tolerance in plants. Transport via membranes is mediated mostly by the ion channels and transporters, which ensure selective passage of specific ions. The molecular and structural diversity of these ion channels and transporters is amazing. Obtaining the detailed descriptions of distinct ion channels and transporters present in halophytes, marine algae and salt-tolerant fungi and then progressing to the cellular and the whole organism mechanisms, is one of the logical ways to understand high salinity tolerance. Transfer of the genes from halophytes to agricultural crops is a means to increase salt tolerance of the crops. The theoretical scientific approaches involve protein chemistry, structure-function relations of membrane proteins, synthetic biology, systems biology and physiology of stress and ion homeostasis. At the time of compiling this e-book many aspects of ion transport under salinity stress are not yet well understood. The e-book has attracted researchers in ion transport and salinity tolerance. We have combined our efforts to achieve a wider, more detailed understanding of salt tolerance in plants mediated by ion transport, to understand present and future ways to modify and manipulate ion transport and salinity tolerance and also to find natural limits for the modifications.


Biochemistry And Molecular Biology Of Plants

Author by : Bob B. Buchanan
Languange : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 21
Total Download : 779
File Size : 44,9 Mb
pdf pdf

Description : Since its publication in 2000, Biochemistry & Molecular Biology of Plants, has been hailed as a major contribution to the plant sciences literature and critical acclaim has been matched by global sales success. Maintaining the scope and focus of the first edition, the second will provide a major update, include much new material and reorganise some chapters to further improve the presentation. This book is meticulously organised and richly illustrated, having over 1,000 full–colour illustrations and 500 photographs. It is divided into five parts covering: Compartments: Cell Reproduction: Energy Flow; Metabolic and Developmental Integration; and Plant Environment and Agriculture. Specific changes to this edition include: Completely revised with over half of the chapters having a major rewrite. Includes two new chapters on signal transduction and responses to pathogens. Restructuring of section on cell reproduction for improved presentation. Dedicated website to include all illustrative material. Biochemistry & Molecular Biology of Plants holds a unique place in the plant sciences literature as it provides the only comprehensive, authoritative, integrated single volume book in this essential field of study.


Synthetic Biology Engineering Complexity And Refactoring Cell Capabilities

Author by : Pablo Carbonell
Languange : en
Publisher by : Frontiers Media SA
Format Available : PDF, ePub, Mobi
Total Read : 96
Total Download : 353
File Size : 44,9 Mb
pdf pdf

Description : One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibit useful biological functions with different levels of complexity. One such case is metabolic engineering, where, with the advent of genetic and protein engineering, by supplying cells with chemically synthesized non-natural amino acids and sugars as new building blocks, it is now becoming feasible to introduce novel physical and chemical functions and properties into biological entities. The rules of how complex behaviors arise, however, are not yet well understood. For instance, instead of considering cells as inert chassis in which synthetic devices could be easily operated to impart new functions, the presence of these systems may impact cell physiology with reported effects on transcription, translation, metabolic fitness and optimal resource allocation. The result of these changes in the chassis may be failure of the synthetic device, unexpected or reduced device behavior, or perhaps a more permissive environment in which the synthetic device is allowed to function. While new efforts have already been made to increase standardization and characterization of biological components in order to have well known parts as building blocks for the construction of more complex devices, also new strategies are emerging to better understand the biological dynamics underlying the phenomena we observe. For example, it has been shown that the features of single biological components [i.e. promoter strength, ribosome binding affinity, etc] change depending on the context where the sequences are allocated. Thus, new technical approaches have been adopted to preserve single components activity, as genomic insulation or the utilization of prediction algorithms able to take biological context into account. There have been noteworthy advances for synthetic biology in clinical technologies, biofuel production, and pharmaceuticals production; also, metabolic engineering combined with microbial selection/adaptation and fermentation processes allowed to make remarkable progress towards bio-products formation such as bioethanol, succinate, malate and, more interestingly, heterologous products or even non-natural metabolites. However, despite the many progresses, it is still clear that ad hoc trial and error predominates over purely bottom-up, rational design approaches in the synthetic biology community. In this scenario, modelling approaches are often used as a descriptive tool rather than for the prediction of complex behaviors. The initial confidence on a pure reductionist approach to the biological world has left space to a new and deeper investigation of the complexity of biological processes to gain new insights and broaden the categories of synthetic biology. In this Research Topic we host contributions that explore and address two areas of Synthetic Biology at the intersection between rational design and natural complexity: (1) the impact of synthetic devices on the host cell, or "chassis" and (2) the impact of context on the synthetic devices. Particular attention will be given to the application of these principles to the rewiring of cell metabolism in a bottom-up fashion to produce non-natural metabolites or chemicals that should eventually serve as a substitute for petrol-derived chemicals, and, on a long-term view, to provide economical, ecological and ethical solutions to today’s energetic and societal challenges.


Peterson S Graduate Programs In Engineering Applied Sciences 2007

Author by : Peterson's (Firm : 2006- )
Languange : en
Publisher by : Petersons
Format Available : PDF, ePub, Mobi
Total Read : 60
Total Download : 443
File Size : 44,5 Mb
pdf pdf

Description : Provides information about admission, financial aid, programs and institutions, and research specialties within the fields of engineering and applied sciences, including civil engineering, information technology, and bioengineering.


Dissertation Abstracts International

Author by :
Languange : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 90
Total Download : 621
File Size : 44,7 Mb
pdf pdf

Description :


Bibliography Of Agriculture

Author by :
Languange : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 80
Total Download : 907
File Size : 47,9 Mb
pdf pdf

Description :


Bibliography Of Agriculture With Subject Index

Author by :
Languange : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 88
Total Download : 109
File Size : 52,8 Mb
pdf pdf

Description :


Cornell University Courses Of Study

Author by : Cornell University
Languange : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 69
Total Download : 343
File Size : 45,6 Mb
pdf pdf

Description :