Developing Biofuel Bioprocesses Using Systems And Synthetic Biology

Author by : Sylvia M. Clay
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 30
Total Download : 543
File Size : 43,5 Mb
pdf pdf

Description : Advances in technological and analytical methods have fostered rapid growth of systems biology and synthetic biology. There continues to be rapid changes and discoveries in both fields with a small number of recent peer-reviewed reviews indicating some of the relationships between systems biology and synthetic biology. This proposed SpringerBrief will cover core concepts of systems biology and synthetic biology and illustrate the implementation of associated research methodologies for an integrated approach to specifically address engineering microorganisms for biofuel production.​


Systems And Synthetic Biology

Author by : Vikram Singh
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 54
Total Download : 175
File Size : 43,8 Mb
pdf pdf

Description : This textbook has been conceptualized to provide a detailed description of the various aspects of Systems and Synthetic Biology, keeping the requirements of M.Sc. and Ph.D. students in mind. Also, it is hoped that this book will mentor young scientists who are willing to contribute to this area but do not know from where to begin. The book has been divided into two sections. The first section will deal with systems biology – in terms of the foundational understanding, highlighting issues in biological complexity, methods of analysis and various aspects of modelling. The second section deals with the engineering concepts, design strategies of the biological systems ranging from simple DNA/RNA fragments, switches and oscillators, molecular pathways to a complete synthetic cell will be described. Finally, the book will offer expert opinions in legal, safety, security and social issues to present a well-balanced information both for students and scientists.


A Systems Theoretic Approach To Systems And Synthetic Biology I Models And System Characterizations

Author by : Vishwesh V. Kulkarni
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 68
Total Download : 445
File Size : 44,7 Mb
pdf pdf

Description : The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology. Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources. In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.


A Systems Theoretic Approach To Systems And Synthetic Biology Ii Analysis And Design Of Cellular Systems

Author by : Vishwesh V. Kulkarni
Languange : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 62
Total Download : 456
File Size : 52,9 Mb
pdf pdf

Description : The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume II contains chapters contributed by leading researchers in the field of systems and synthetic biology that concern modeling physiological processes and bottom-up constructions of scalable biological systems. The modeling problems include characterisation and synthesis of memory, understanding how homoeostasis is maintained in the face of shocks and relatively gradual perturbations, understanding the functioning and robustness of biological clocks such as those at the core of circadian rhythms, and understanding how the cell cycles can be regulated, among others. Some of the bottom-up construction problems investigated in Volume II are as follows: How should biomacromolecules, platforms, and scalable architectures be chosen and synthesised in order to build programmable de novo biological systems? What are the types of constrained optimisation problems encountered in this process and how can these be solved efficiently? As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.


Applications Of Membrane Computing In Systems And Synthetic Biology

Author by : Pierluigi Frisco
Languange : en
Publisher by : Springer Science & Business Media
Format Available : PDF, ePub, Mobi
Total Read : 48
Total Download : 827
File Size : 55,9 Mb
pdf pdf

Description : Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying them, present different applications of Membrane Systems to Biology. Deterministic, non-deterministic and stochastic systems paired with different algorithms and methodologies show the full potential of this framework. The book is addressed to researchers interested in applications of discrete biological models and the interplay between Membrane Systems and other approaches to analyze complex systems.


Systems Synthetic Biology System Models User Oriented Specifications And Applications

Author by : Bor-Sen Chen
Languange : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 59
Total Download : 586
File Size : 50,8 Mb
pdf pdf

Description :


Synthetic Biology

Author by : Clyde A. Hutchinson, III
Languange : en
Publisher by : Perspectives Cshl
Format Available : PDF, ePub, Mobi
Total Read : 65
Total Download : 469
File Size : 44,8 Mb
pdf pdf

Description : Synthetic biology involves the rational design and construction of biological components and systemsfrom genetic elements and metabolic pathways to entirely new organisms. Progress in this field has been rapid, and it promises to significantly expand our capabilities in biotechnology, medicine, and agriculture. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines the tools and techniques employed by synthetic biologists, how these may be used to develop new drugs, diagnostic approaches, food sources, and clean energy, and what the field of synthetic biology has taught us about natural living systems. The contributors discuss advances in DNA synthesis and assembly, genome editing (e.g., CRISPR/Cas9), and artificial genetic systems. Progress in designing complex genetic switches and circuits, expanding the genetic code, modifying cellular organization, producing proteins using cell-free systems, and developing biodesign automation tools is also covered. The authors also explore ways to produce new organisms and products that have particular attributesfor example, microbial "molecular factories," synthetic organs and tissues, and plants with novel traits. This volume is an essential resource for molecular, cell, and systems biologists who seek to engineer living systems for human benefit.


Synthetic Biology

Author by : Huimin Zhao
Languange : en
Publisher by : Academic Press
Format Available : PDF, ePub, Mobi
Total Read : 93
Total Download : 510
File Size : 45,7 Mb
pdf pdf

Description : Synthetic Biology provides a framework to examine key enabling components in the emerging area of synthetic biology. Chapters contributed by leaders in the field address tools and methodologies developed for engineering biological systems at many levels, including molecular, pathway, network, whole cell, and multi-cell levels. The book highlights exciting practical applications of synthetic biology such as microbial production of biofuels and drugs, artificial cells, synthetic viruses, and artificial photosynthesis. The roles of computers and computational design are discussed, as well as future prospects in the field, including cell-free synthetic biology and engineering synthetic ecosystems. Synthetic biology is the design and construction of new biological entities, such as enzymes, genetic circuits, and cells, or the redesign of existing biological systems. It builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing. The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components that can be modeled, understood, and tuned to meet specific performance criteria and the assembly of these smaller parts and devices into larger integrated systems that solve specific biotechnology problems. Includes contributions from leaders in the field presents examples of ambitious synthetic biology efforts including creation of artificial cells from scratch, cell-free synthesis of chemicals, fuels, and proteins, engineering of artificial photosynthesis for biofuels production, and creation of unnatural living organisms Describes the latest state-of-the-art tools developed for low-cost synthesis of ever-increasing sizes of DNA and efficient modification of proteins, pathways, and genomes Highlights key technologies for analyzing biological systems at the genomic, proteomic, and metabolomic levels which are especially valuable in pathway, whole cell, and multi-cell applications Details mathematical modeling tools and computational tools which can dramatically increase the speed of the design process as well as reduce the cost of development.


Systems Biology And Synthetic Biology

Author by : Pengcheng Fu
Languange : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 21
Total Download : 489
File Size : 42,5 Mb
pdf pdf

Description : The genomic revolution has opened up systematic investigations and engineering designs for various life forms. Systems biology and synthetic biology are emerging as two complementary approaches, which embody the breakthrough in biology and invite application of engineering principles. Systems Biology and Synthetic Biology emphasizes the similarity between biology and engineering at the system level, which is important for applying systems and engineering theories to biology problems. This book demonstrates to students, researchers, and industry that systems biology relies on synthetic biology technologies to study biological systems, while synthetic biology depends on knowledge obtained from systems biology approaches.


Microbial Synthetic Biology

Author by :
Languange : en
Publisher by : Elsevier
Format Available : PDF, ePub, Mobi
Total Read : 71
Total Download : 852
File Size : 49,6 Mb
pdf pdf

Description : The 40th volume of Methods in Microbiology focuses on microbial synthetic biology. Synthetic biology is a rapidly growing discipline that builds on well-established principles of genetic engineering and biotechnology by integrating computational and engineering approaches to the design and construction of novel biological systems. This volume addresses some of the major technical challenges stand in the way of achieving a radical step-change in our ability to engineer complex multi-scaled biological systems. These include: the application of computation intelligence to the design of synthetic microbial systems, design automation and constraints; the impact of noise and stochasticity; the engineering of biosensors; the characteristic of a model bacterial chassis. A key issue in Synthetic Biology is that of its social dimensions and a chapter is dedicated to the important issue. Authority or expertise of contributors, lLnks to websites for the design and modelling of microbes and microbial metabolism, First volume to address the practical issues Discussion on responsible innovation